A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular basis of protective effect by crocetin on survival and liver tissue damage following hemorrhagic shock. | LitMetric

Hemorrhagic shock (HS) causes reduction of cellular energy stores, as measured by levels of ATP and ADP. Furthermore, energy depletion may cause mitochondrial damage, which in turn leads to cell death by apoptosis. The hypothesis of the present study is that by enhancing the recovery of cellular ATP and ADP and mitochondrial damage can be reduced, and the extent of apoptosis minimized. Crocetin, a carotenoid compound, appears to enhance the diffusion of oxygen in aqueous solution, and hence may improve energy stores both to the cell and within it. HS was produced in Sprague-Dawley rats by withdrawing blood from the carotid cannula until a mean arterial pressure of 35-40 mm Hg was reached, and then maintained by further withdrawals of blood for 30 and 60 min. Crocetin was administered 2-4 mg/kg in resuscitation fluid through venus cannula and the animals survived for 24-48 h after HS. Experiments designed to promote tissue reconstitution of ATP using crocetin indicate that these approaches are successful in increasing ATP post-hemorrhage and survival. Crocetin treatment also inhibited cellular damage as indicated by increase of Bcl-2 following decrease in cytosolic cytochrome c and caspase-3 after resuscitation. The prolonged energy deficit seen after hemorrhagic shock can produce late damage and rapid restoration of ATP levels to baseline can reduce apoptosis. In conclusions, crocetin can minimize the cellular damage as evidenced by apoptosis and increased the survival of rats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-005-7155-1DOI Listing

Publication Analysis

Top Keywords

hemorrhagic shock
12
energy stores
8
atp adp
8
mitochondrial damage
8
cellular damage
8
crocetin
6
damage
6
atp
5
molecular basis
4
basis protective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!