Acute hypobaric hypoxia induces a transient reactivation of the fetal-metabolic gene program in the rat heart. Although chronic hypobaric hypoxia causes alterations in metabolism and cardiac function, little is known about the transcriptional profile associated with acclimatization to chronic hypoxia. Because in chronic hypoxia only the right ventricle is exposed to pressure overload (pulmonary hypertension), we hypothesized that chronic hypobaric hypoxia induces a differential transcriptional profile in the right and left ventricle. Male Wistar rats were exposed to a hypobaric environment (11% O2) for 4, 10, and 12 weeks. Right and left ventricular tissue was isolated for histology and candidate gene expression. Chronic hypobaric hypoxia induced right ventricular hypertrophy without fibrosis. In the right ventricle, changes in metabolic gene expression suggested a downregulation of fatty acid metabolism and an increase in glucose metabolism, while left ventricular metabolic gene expression suggested restoration of fatty acid metabolism. While myosin heavy chain isoform transcript levels in the right ventricle indicated a progressive reactivation of the fetal iso-gene pattern, there was normalization of myosin iso-gene expression in the left ventricle. Similarly, sarcoendoplasmic reticulum ATPase 2a (SERCA2a) transcript levels in the right ventricle decreased by 12 weeks of chronic hypoxia exposure, whereas, left ventricular SERCA2a expression was unchanged. In conclusion, acclimatization to chronic hypobaric hypoxia induced a differential transcriptional response between the right and left ventricle. We speculate that reactivation of the fetal-metabolic program in the right ventricle is adaptive to pressure overload.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-005-6629-5DOI Listing

Publication Analysis

Top Keywords

hypobaric hypoxia
24
chronic hypobaric
20
left ventricle
16
acclimatization chronic
12
differential transcriptional
12
transcriptional profile
12
chronic hypoxia
12
left ventricular
12
gene expression
12
hypoxia
9

Similar Publications

The digitization of aircraft cockpits places high demands on the colour vision of pilots. The present study investigates colour vision changes upon acute exposure to hypobaric hypoxia. The digital Waggoner Computerized Color Vision Test and the Waggoner D-15 were performed by 54 healthy volunteers in a decompression chamber.

View Article and Find Full Text PDF

Choroidal thickening and retinal dopamine increase in mice at high altitude.

Exp Eye Res

January 2025

Department of Ophthalmology, The Second Hospital &Clinical Medical School, Lanzhou University, Gansu, 730000, China. Electronic address:

The mechanisms underlying the low incidence of myopia at high altitudes remain unclear. Choroidal thickness and the dopaminergic system have been shown to be closely associated with myopia development. This study aimed to investigate the effects of high altitude exposure on choroidal thickness and the dopaminergic system.

View Article and Find Full Text PDF

Tissue remodeling during high-altitude pulmonary edema in rats: Biochemical and histomorphological analysis.

Tissue Cell

January 2025

Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia. Electronic address:

High altitude characterized by the low partial pressure of the oxygen is a life-threatening condition that contributes to the development of acute pulmonary edema and hypoxic lung injury. In this study, we aimed to investigate the contribution of some inflammatory and oxidative stress markers along with antioxidant system enzymes in the pathogenesis of HAPE (high-altitude pulmonary edema) formation. We incorporated the study on 42 male rats to unravel the role of mast cells (MCs) and TNF-α in the lung after the effect of acute hypobaric hypoxia.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the effect of hypoxia and hypobaric conditions on refraction and central corneal thickness on healthy corneas during an ascent without oxygen supplementation above 7000 m (23 000 ft).

Methods: Twelve multinational mountaineers were included in a prospective observational cohort study during an expedition to the Korzhenevskoi Peak (7105 m). The two patients excluded from the study had a history with keratoconus or were current wearers of rigid contact lenses.

View Article and Find Full Text PDF

Chronic exposure to high altitudes causes pathophysiological cardiac changes that are characterized by cardiac dysfunction, cardiac hypertrophy, and decreased energy reserves. However, finding specific pharmacological interventions for these pathophysiological changes is challenging. In this study, we identified tetramethylpyrazine (TMP) as a promising drug candidate for cardiac dysfunction caused by simulated high-altitude exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!