Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily.

Mol Genet Genomics

Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik (IZMB), Universität Bonn, Germany.

Published: October 2005

In bacteria, magnesium uptake is mainly mediated by the well-characterized CorA type of membrane proteins. In recent years, functional homologues have been characterized in the inner mitochondrial membrane of yeast and mammals (the MRS2/LPE10 type), in the plasma membrane of yeast (the ALR/MNR type) and, as an extended family of proteins, in the model plant Arabidopsis thaliana. Despite generally low sequence similarity, individual proteins can functionally complement each other over large phylogenetic distances. All these proteins are characterized by a universally conserved Gly-Met-Asn (GMN) motif at the end of the first of two conserved transmembrane domains near the C-terminus. Mutations of the GMN motif are known to abolish Mg(2+) transport, but the naturally occurring variants GVN and GIN may be associated with the transport of other divalent cations, such as zinc and cadmium, respectively. We refer to this whole class of proteins as the 2-TM-GxN type. The functional membrane channel is thought to be formed by oligomers containing four or five subunits. The wealth of sequence data now available allows us to explore the evolutionary diversification of the basic 2-TM-GxN model within the so-called metal ion transporter (MIT) superfamily. Here we report phylogenetic analyses on more than 360 homologous protein sequences derived from genomic sequences from representatives of all three domains of life. Independent gene duplications have occurred in fungi, plants and proteobacteria at different phylogenetic depths. Moreover, there is ample evidence for several instances of horizontal gene transfer of members of the 2-TM-GxN superfamily in Eubacteria and Archaea. Only single genes of the MRS2 type have been identified in vertebrate genomes. In contrast, 15 members are found in the model plant Arabidopsis thaliana, which appear to have arisen by at least four independent founder events before the diversification of flowering plants. Phylogenetic clade assignment seems to correlate with alterations in the highly conserved sequence around the GMN motif. This presumably forms an integral part of the pore surface, and changes in its structure may result in altered transport capacities for different divalent cations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-005-0011-xDOI Listing

Publication Analysis

Top Keywords

divalent cations
12
gmn motif
12
mit superfamily
8
membrane yeast
8
model plant
8
plant arabidopsis
8
arabidopsis thaliana
8
proteins
6
type
5
transport
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!