Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The aim of this study was to analyze the arterial wall response to plaque-prone hemodynamic environments, known to occur mainly in areas of arterial trees such as bifurcations and branching points. In these areas, the vasculature is exposed to cyclically reversing flow that induces an endothelial dysfunction predisposing thus arteries to local development of atherosclerotic plaques.
Methods: We used an ex vivo perfusion system that allows culturing arterial segments under different hemodynamic conditions. Porcine carotid arteries were exposed for 3 days to unidirectional high and low shear stress (6 +/- 3 and 0.3 +/- 0.1 dyn/cm(2)) as well as to oscillatory shear stress (0.3 +/- 3 dyn/cm(2)). This latter condition mimics the hemodynamics present at plaque-prone areas. At the end of the perfusion, the influence of different flow patterns on arterial metabolism was assessed in terms of matrix turnover as well as of smooth muscle cell function, differentiation and migration.
Results: Our results show that after 3 days of perfusion none of the applied conditions influence smooth muscle cell phenotype retaining their full contraction capacity. However, an increase in the expression level of matrix metalloproteinase-2 and -9, as well as a decrease in plasminogen activator inhibitor-1 expression were observed in arteries exposed to oscillatory shear stress when compared to arteries exposed to unidirectional shear stress.
Conclusion: These observations suggest that plaque-prone hemodynamic environment triggers a vascular wall remodelling process and promotes changes in arterial wall metabolism, with important implication in atherogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000088343 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!