Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2005.09.004DOI Listing

Publication Analysis

Top Keywords

regenerating ovary
4
ovary generating
4
generating controversy
4
regenerating
1
generating
1
controversy
1

Similar Publications

Dual-double stem cell therapy, which integrates mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), represents a cutting-edge approach in regenerative medicine, particularly for conditions such as ovarian decline, premature ovarian insufficiency (POI), and induced ovarian failure. This therapy leverages the unique properties of MSCs and HSCs, enhancing tissue repair, immune modulation, and overall regenerative outcomes. MSCs, known for their ability to differentiate into various cell types, provide a supportive microenvironment and secrete bioactive molecules that promote angiogenesis and reduce inflammation.

View Article and Find Full Text PDF

The effect of anterior disc displacement with polycystic ovarian syndrome on adolescent condylar bone remodeling.

BMC Oral Health

January 2025

Department of Oral Surgery, Shanghai Ninth People's Hospital, School of Medicine, College of Stomatology, National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Jiao Tong University, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.

Background: Adolescent females have a high prevalence of temporomandibular joint (TMJ) anterior disc displacement (ADD), which can lead to condylar resorption and dentofacial deformity. Polycystic ovarian syndrome (PCOS) is a common endocrine disorder that disrupts bone metabolism. However, the effects of PCOS on bone remodeling especially after disc repositioning (DR) surgery are not well understood.

View Article and Find Full Text PDF

Excessive BMP3b suppresses skeletal muscle differentiation.

Biochem Biophys Res Commun

February 2025

Molecular Signaling and Biochemistry, Kyushu Dental University, Kokurakitaku, Kitakyushu, Fukuoka, Japan.

Bone morphogenetic protein (BMP)-3b, also known as growth differentiation factor (GDF)-10, belongs to the transforming growth factor (TGF)-β superfamily. Despite being named a BMP, BMP3b is considered as an intermediate between the TGFβ/activin/myostatin and BMP/GDF subgroups of the TGFβ superfamily. Myoblast differentiation is tightly regulated by various cytokines, including the TGFβ superfamily members.

View Article and Find Full Text PDF

Generation of a human induced pluripotent stem cell line NTUHi006-A from a polycystic ovarian syndrome patient.

Stem Cell Res

February 2025

Department of Obstetrics and Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Livia Shangyu Wan Chair Professor of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan. Electronic address:

Polycystic ovary syndrome (PCOS) is a common endocrine disorder related to multifactors and genetic polymorphisms. Here, we derived an induced pluripotent stem cell (hiPSC) line NTUHi006-A from a phenotype A (full-blown) PCOS patients with clinical hyperandrogenism, chronic anovulation, and polycystic ovarian morphology on ultrasonography. NTUHi006-A showed stemness, pluripotency and stem cell-like morphology.

View Article and Find Full Text PDF

Truncated recombinant Jagged1 fused with human IgG1 Fc activates Notch target genes in human periodontal ligament cells.

Arch Oral Biol

November 2024

Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

Objective: Jagged1, a Notch ligand, is essential for osteogenic differentiation in human periodontal ligament cells (hPDLs) by interacting with Notch2 to induce osteogenic markers, alkaline phosphatase activity, and mineral deposition. However, its large size hampers absorption and distribution of biomaterials. This study aimed to identify the critical region of Jagged1 necessary for its interaction with Notch2 to create a truncated version that retains osteogenic activity but with improved delivery characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!