A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strategies for targeting the multidrug resistance-1 (MDR1)/P-gp transporter in human malignancies. | LitMetric

ATP-binding cassette (ABC) transporters are a super family of channel proteins that include multi-drug resistance 1 (MDR1/P-gp) and multi-drug resistance related proteins (MRPs) whose functions include the efflux of ions, nutrients, lipids, amino acids, peptides, proteins and drugs. The three-dimensional structures of bacterial and human ABC transporters demonstrate that these proteins are ATP-dependent molecular machines that scan the inner membrane leaflet for lipids/drugs and flip them to the outer membrane leaflet. In many human cancers, the level of expression of MDR1 is an important independent prognostic factor that determines response to combination chemotherapy. Intrinsic and acquired resistance to chemotherapy exposure are due to a high level of MDR1 expression that enhances drug efflux, with associated poor clinical outcome and lower complete remission (CR) rates. Recent clinical trials in hematological and solid malignancies have shown promise for a prolonged remission and improved overall survival when the MDR1 P-gp is inhibited when combined with chemotherapy. Structure-based homology modeling of these ABC transporters may help design novel drug candidates to both the membrane-spanning domain (MSD) and the nucleotide-binding domain (NBD) located within the cytoplasm. This review will highlight advances in the utilization of homology modeling in the drug discovery process and how this will impact on fundamental insights to the development of novel therapeutics that could alter and/or inhibit their functions.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568009054863609DOI Listing

Publication Analysis

Top Keywords

abc transporters
12
multi-drug resistance
8
membrane leaflet
8
homology modeling
8
strategies targeting
4
targeting multidrug
4
multidrug resistance-1
4
resistance-1 mdr1/p-gp
4
mdr1/p-gp transporter
4
transporter human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!