Application of 3D-QSAR techniques in anti-HIV-1 drug design--an overview.

Curr Pharm Des

Lindsley F. Kimball Research Institute, The New York Blood Center, 310 E 67th Street, New York, NY 10021, USA.

Published: October 2005

Despite the availability of several classes of drugs against acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus type 1(HIV-1), this deadly disease showing very little sign of containment, especially in Sub-Saharan Africa and South-East Asia. More than 20 million people died since the first diagnosis of AIDS more than twenty years ago and almost 40 million people are currently living with HIV/AIDS. Structure-based drug design effort was immensely successful in identifying several drugs that are currently available for the treatment of HIV-1. Many applications have been reported on the use of quantitative structure-activity relationship (QSAR) studies to understand the drug-receptor interactions and help in the design of more effective analogs. Extensive application was also reported on the application of 3D-QSAR techniques, such as, Comparative Molecular Field Analysis (CoMFA), Comparative Molecular Similarity Analysis (CoMSIA), pharmacophore generation using Catalyst/HypoGen, free-energy binding analysis, GRID/GOLPE, HINT-based techniques, etc. in anti-HIV-1 drug discovery programs in academia and industry. We have attempted to put together a comprehensive overview on the 3D-QSAR applications in anti-HIV-1 drug design reported in the literature during the last decade.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612054864902DOI Listing

Publication Analysis

Top Keywords

anti-hiv-1 drug
12
application 3d-qsar
8
3d-qsar techniques
8
techniques anti-hiv-1
8
drug design
8
comparative molecular
8
drug
4
drug design--an
4
design--an overview
4
overview despite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!