A novel LTP (CcLTP) from a Capsicum chinense cv Habanero was isolated from a fruit-specific SSH library. While this gene shares similarity with other LTPs, it is considerably larger than any lipid transfer protein reported to date and has a neutral predicted pI. CcLTP is consistently expressed in seedlings from three Capsicum species. It is also present at very high levels in ripening and mature fruit in C. chinense, but not in fruit of any C. annuum or C. frutescens varieties examined. We have obtained 3.8 kb of sequence containing the CcLTP gene and isolated two forms of mRNA transcripts which result from an alternative splicing event. Both transcripts are full-length cDNAs with putative open reading frames of 492 bp and 519 bp, encoding proteins of 164 and 173 amino acids, respectively, which differ only by an insertion of 9 amino acids. Both splice variants are detected consistently via RT-PCR. A 19 bp deletion in the promoter region differentiates C. chinense CcLTP from that of C. annuum and C. frutescens. The protein and its expression are characterized in C. chinense fruit, and a possible role in pepper fruit ripening and maturation is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-005-0120-0 | DOI Listing |
Methods Mol Biol
January 2025
Estrella Mountain Community College, Phoenix, AZ, USA.
Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.
View Article and Find Full Text PDFProc Jpn Acad Ser B Phys Biol Sci
January 2025
Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
The formation of autophagosomes is a pivotal step in autophagy, a lysosomal degradation system that plays a crucial role in maintaining cellular homeostasis. After autophagy induction, phase separation of the autophagy-related (Atg) 1 complex occurs, facilitating the gathering of Atg proteins and organizes the autophagosome formation site, where the initial isolation membrane (IM)/phagophore is generated. The IM then expands after receiving phospholipids from endomembranes such as the endoplasmic reticulum.
View Article and Find Full Text PDFSphingolipids are an essential lipid component of the skin barrier with alterations in skin sphingolipid composition associated with multiple skin disorders including psoriasis, atopic dermatitis, and ichthyosis. Contributions to skin sphingolipid abundance are not well characterized, thus the main method of modulating skin lipid levels is the topical application of creams rich with sphingolipids at the skin surface. Evidence that diet and gut microbiome function can alter skin biology proposes an intriguing potential for the modulation of skin lipid homeostasis through gut microbial metabolism, but potential mechanisms of action are not well understood.
View Article and Find Full Text PDFBackground: Bridge-like lipid transfer proteins (BLTPs) mediate bulk lipid transport at membrane contact sites. Mutations in BLTPs are linked to both early-onset neurodevelopmental and later-onset neurodegenerative diseases, including movement disorders. The tissue specificity and temporal requirements of BLTPs in disease pathogenesis remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!