In this work, we determined the minimum number of detectable 111In-tropolone-labelled bone-marrow-derived stem cells from the maximum activity per cell which did not affect viability, proliferation and differentiation, and the minimum detectable activity (MDA) of 111In by SPECT. Canine bone marrow mesenchymal cells were isolated, cultured and expanded. A number of samples, each containing 5x10(6) cells, were labelled with 111In-tropolone from 0.1 to 18 MBq, and cell viability was measured afterwards for each sample for 2 weeks. To determine the MDA, the anthropomorphic torso phantom (DataSpectrum Corporation, Hillsborough, NC) was used. A point source of 202 kBq 111In was placed on the surface of the heart compartment, and the phantom and all compartments were then filled with water. Three 111In SPECT scans (duration: 16, 32 and 64 min; parameters: 128x128 matrix with 128 projections over 360 degrees) were acquired every three days until the 111In radioactivity decayed to undetectable quantities. 111In SPECT images were reconstructed using OSEM with and without background, scatter or attenuation corrections. Contrast-to-noise ratio (CNR) in the reconstructed image was calculated, and MDA was set equal to the 111In activity corresponding to a CNR of 4. The cells had 100% viability when incubated with no more than 0.9 MBq of 111In (80% labelling efficiency), which corresponded to 0.14 Bq per cell. Background correction improved the detection limits for 111In-tropolone-labelled cells. The MDAs for 16, 32 and 64 min scans with background correction were observed to be 1.4 kBq, 700 Bq and 400 Bq, which implies that, in the case where the location of the transplantation is known and fixed, as few as 10,000, 5000 and 2900 cells respectively can be detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/50/19/001 | DOI Listing |
Molecules
December 2024
Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan.
No effective vaccines or treatments are currently available for severe fever with thrombocytopenia syndrome (SFTS), a fatal tick-borne infectious disease caused by the SFTS virus (SFTSV). This study evaluated the potential of In-labeled anti-SFTSV antibodies targeting SFTSV structural proteins as single-photon emission computed tomography (SPECT) imaging agents for the selective visualization of SFTSV-infected sites. This study used nuclear medicine imaging to elucidate the pathology of SFTS and assess its therapeutic efficacy.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada.
Radioimmunotherapy (RIT) with α-particle-emitting, Ac complexed to trastuzumab may offer an alternative treatment for patients who progress on HER2-targeted therapies. Moreover, RIT with [Ac]Ac-DOTA-trastuzumab could be combined with SPECT/CT imaging with [In]In-DOTA-trastuzumab in a theranostic approach. In this study, we compared DOTA-conjugated trastuzumab IgG, F(ab') or Fab complexed to In or Ac for SPECT/CT imaging and α-particle RIT of subcutaneous (s.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
Radiotheranostics using prostate-specific membrane antigen (PSMA)-targeting radioligands offers precision medicine by performing radionuclide therapy based on results of diagnosis. Albumin binder (ALB) binds to albumin reversibly and contributes to effective radiotheranostics by enhancing tumor accumulation of PSMA-targeting radioligands. We newly developed two ALB-containing PSMA-targeting radioligands including dual functional linkers, a hydrophilic linker, d-glutamic acid, and a hydrophobic linker, 4-(aminomethyl)benzoic acid, with the opposite arrangement (PNT-DA6 and PNT-DA7).
View Article and Find Full Text PDFJ Transl Med
November 2024
Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium.
CD38 is a multifunctional transmembrane glycoprotein found in multiple tissues and overexpressed in many cancer cells, notably in hematological malignancies such as leukemia and multiple myeloma (MM). Therefore, targeting CD38 remains an attractive strategy for cancer treatment in hematological malignancies as well as in solid tumors. It plays a critical role in the progression of these diseases through its ADP-ribosyl cyclase and cADPR-hydrolase activities.
View Article and Find Full Text PDFHeliyon
October 2024
Centre George-François Leclerc, Service de Médecine Nucléaire, IMATHERA UMS INSERM BioSanD US58, 1 rue du Professeur Marion, 21079, Dijon, France.
Purpose: Radiation therapy (RT) exerts its anti-tumour efficacy by inducing direct damage to cancer cells but also through modification of the tumour microenvironment (TME) by inducing immunogenic antitumor response. Conversely, RT also promotes an immunosuppressive TME notably through the recruitment of regulatory T cells (Tregs). Glycoprotein A repetitions predominant (GARP), a transmembrane protein highly expressed by activated Tregs, plays a key role in the activation of TGF-β and thus promotes the immunosuppressive action of Tregs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!