Isocitrate lyase activity is required for virulence of the intracellular pathogen Rhodococcus equi.

Infect Immun

Department of Industrial Microbiology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland.

Published: October 2005

Rhodococcus equi is an important pathogen of foals, causing severe pyogranulomatous pneumonia. Virulent R. equi strains grow within macrophages, a process which remains poorly characterized. A potential source of carbon for intramacrophage R. equi is membrane lipid-derived fatty acids, which following beta oxidation are assimilated via the glyoxylate bypass. To assess the importance of isocitrate lyase, the first enzyme of the glyoxylate bypass, in virulence of a foal isolate of R. equi, a mutant was constructed by a strategy of single homologous recombination using a suicide plasmid containing an internal fragment of the R. equi aceA gene encoding isocitrate lyase. Complementation of the resulting mutant with aceA showed that the mutant was specific for this gene. Assessment of virulence in a mouse macrophage cell line showed that the mutant was killed, in contrast to the parent strain. Studies in the liver of intravenously infected mice showed enhanced clearance of the mutant. When four 3-week-old foals were infected intrabronchially, the aceA mutant was completely attenuated, in contrast to the parent strain. In conclusion, the aceA gene was shown to be essential for virulence of R. equi, suggesting that membrane lipids may be an important source of carbon for phagocytosed R. equi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1230931PMC
http://dx.doi.org/10.1128/IAI.73.10.6736-6741.2005DOI Listing

Publication Analysis

Top Keywords

isocitrate lyase
12
equi
8
rhodococcus equi
8
source carbon
8
glyoxylate bypass
8
acea gene
8
acea mutant
8
contrast parent
8
parent strain
8
mutant
6

Similar Publications

New Insight into the Related Candidate Genes and Molecular Regulatory Mechanisms of Waterlogging Tolerance in Tree Peony .

Plants (Basel)

November 2024

Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Rd., Songjiang District, Shanghai 201602, China.

Research on the waterlogging tolerance mechanisms of helps us to further understand these mechanisms in the root system and enhance its root bark and oil yields in southern China. In this study, root morphological identification, the statistics of nine physiological and biochemical indicators, and a comparative transcriptome analysis were used to investigate the waterlogging tolerance mechanism in this plant. As flooding continued, the roots' vigor dramatically declined from 6 to 168 h of waterlogging, the root number was extremely reduced by up to 95%, and the number of roots was not restored after 96 h of recovery.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to track key enzymes and chemical changes in coffee during Self-Induced Anaerobiosis Fermentation (SIAF) with different yeasts, assessing their effects on seed germination.
  • - Yeasts like Saccharomyces cerevisiae and Torulospora delbrueckii showed high enzyme activity and cell populations after fermentation, with significant changes in organic acids detected.
  • - The findings indicate that fermentation methods affect seed quality differently, with conventional processing preserving more viable seeds compared to SIAF.
View Article and Find Full Text PDF

Thymoquinone (TQ), a bioactive compound from black cumin (), has demonstrated a broad range of therapeutic effects. The aim of this study is to evaluate the antifungal efficacy of TQ by targeting key virulence factors in , specifically focusing on isocitrate lyase (ICL) activity, biofilm formation, and gene expression. This study explored TQ's impact on ICL, a decisive enzyme in the glyoxylate cycle, along with its effect on hyphal formation, biofilm development, and the virulent gene expression of through in silico and in vitro studies.

View Article and Find Full Text PDF

Engineering to Produce l-Malic Acid from Glycerol.

ACS Synth Biol

November 2024

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.

The declining availability of cheap fossil-based resources has sparked growing interest in the sustainable biosynthesis of organic acids. l-Malic acid, a crucial four-carbon dicarboxylic acid, finds extensive applications in the food, chemical, and pharmaceutical industries. Synthetic biology and metabolic engineering have enabled the efficient microbial production of l-malic acid, albeit not in , an important industrial microorganism.

View Article and Find Full Text PDF

Conversion of lipids into carbohydrates rescues energy insufficiency in rapeseed germination under waterlogging stress.

Physiol Plant

October 2024

MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China.

Waterlogging stress, particularly during seed germination, significantly affects plant growth and development. However, the physiological and molecular mechanisms underlying waterlogging stress responses during rapeseed germination remain unclear. In this study, two rapeseed cultivars, Xiangzayou518 (waterlogging-sensitive) and Dadi199 (waterlogging-tolerant), were used to explore the physiological mechanisms underlying rapeseed response to waterlogging stress during germination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!