Nosocomial infections in immune-suppressed patients are a widespread problem in intensive care medicine. Such patients are highly susceptible to infections because their immune defenses are impaired and, therefore, unable to adequately combat invading microorganisms. To investigate the problem of sepsis-induced immune suppression, we used a model in which mice developed sublethal peritonitis induced by cecal ligation and puncture (CLP). Two days after CLP mice were in an immune-suppressed state, as measured by impaired capacity to produce tumor necrosis factor (TNF) and enhanced susceptibility to bacterial infections. Since macrophage migration inhibitory factor (MIF) is a critical mediator of septic shock by modulation of innate immune responses, the role of MIF in sepsis-induced immune suppression was analyzed. Neutralization of endogenous MIF further enhanced susceptibility to bacterial superinfection after CLP. Conversely, treatment with recombinant human MIF before the bacterial superinfection protected the animals. MIF treatment reconstituted the impaired capacity to produce proinflammatory cytokines, such as TNF and interleukin-6. This study indicates that MIF might be able to ameliorate the sepsis-induced immune suppression by reenabling the organism to react adequately to a secondary bacterial challenge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1230916PMC
http://dx.doi.org/10.1128/IAI.73.10.6488-6492.2005DOI Listing

Publication Analysis

Top Keywords

bacterial superinfection
12
sepsis-induced immune
12
immune suppression
12
macrophage migration
8
migration inhibitory
8
inhibitory factor
8
impaired capacity
8
capacity produce
8
enhanced susceptibility
8
susceptibility bacterial
8

Similar Publications

MPOX is an orthopoxvirus whose infection has been declared a Public Health Emergency of International Concern in 2022 and 2024. It proved to be a virus with markedly heterogeneous and varied clinical presentation. We performed a systematic PubMed review of articles reporting cases of different clinical manifestations of MPOX until October 2024.

View Article and Find Full Text PDF

In this study, we identify and characterize a novel phage-inducible chromosomal island found in commensal Escherichia coli MP1. This novel element, EcCIMP1, is induced and mobilized by the temperate helper phage vB_EcoP_Kapi1. EcCIMP1 contributes to superinfection immunity against its helper phage, impacting bacterial competition outcomes.

View Article and Find Full Text PDF

Background: The most severe complications of antibiotic use are clostridial infection (CDI) and pseudomembranous colitis (PMC). There is a need for further study of these conditions and identification of their triggers.

Aim: To identify risk factors for severe forms of antibiotic-associated diarrhea caused by .

View Article and Find Full Text PDF

Mathematical comparison of protocols for adapting a bacteriophage to a new host.

Virus Evol

November 2024

Institute for Modeling Collaboration and Innovation, University of Idaho, 875 Perimeter drive, Moscow, ID 83844, United States.

Interest in phage therapy-the use of bacterial viruses to treat infections-has increased recently because of the rise of infections with antibiotic-resistant bacteria and the failure to develop new antibiotics to treat those infections. Phages have shown therapeutic promise in recent work, and successful treatment minimally requires giving the patient a phage that will grow on their infecting bacterium. Although nature offers a bountiful and diverse supply of phages, there have been a surprising number of patient infections that could not be treated with phages because no suitable phage was found to kill the patient's bacterium.

View Article and Find Full Text PDF

Elucidation of molecular function of phage protein responsible for optimization of host cell lysis.

BMC Microbiol

December 2024

Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.

Background: Bacteriophages (or phages) replicate by utilizing bacterial resources and destroy their host cells at the end of the replication cycle. Phages employ multiple proteins to optimize host cell lysis, thereby maximizing the production of phage particles. However, elucidating the entire lysis process is challenging due to the abundance of uncharacterized genes in the phage genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!