Monocytes play a key role in mobilization of the immune response during sepsis. In response to LPS, monocytes produce both proinflammatory mediators and regulatory proteins that counteract the inflammation and oxidative stress. In murine macrophages, LPS stimulates expression of heme oxygenase 1 (HO-1), a cytoprotective enzyme that catalyzes the degradation of heme. The HO-1 5'-untranslated region, similarly to other cytoprotective genes, contains antioxidant-response elements (AREs) that can bind the transcription factor NF-E2-related factor 2 (Nrf2). At present, the role of Nrf2 in LPS-induced HO-1 expression in monocytic cells has not been investigated. In this study, LPS induced HO-1 mRNA and protein expression in human monocytes and THP-1 cells. Nrf2 translocated from the cytosol to the nucleus in response to LPS and bound to the ARE site in the human HO-1 promoter. In addition, a dominant negative Nrf2 mutant inhibited LPS-induced HO-1 mRNA expression but not TNF-alpha mRNA expression in THP-1 cells. Ro-31-8220, a pan-protein kinase C (PKC) inhibitor, and Go6976, a classical PKC inhibitor, blunted LPS-induced HO-1 mRNA expression in monocytes and THP-1 cells. Both PKC inhibitors also blocked LPS-induced Nrf2 binding to the ARE. These results indicate that LPS-induced HO-1 expression in human monocytic cells requires Nrf2 and PKC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.175.7.4408 | DOI Listing |
Int Immunopharmacol
December 2024
Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China. Electronic address:
Acute lung injury being one of the earliest and most severe complications during sepsis and macrophages play a key role in this process. To investigate the regulatory effects and potential mechanisms of adipose mesenchymal stem cell derived-exosomes (ADSC-exo) on macrophages and septic mice, ADSCs-exo was administrated to both LPS-induced macrophage and cecal ligation and puncture (CLP) induced sepsis mice. ADSCs-exo was confirmed to inhibit M1 polarization of macrophages and to reduce excessive inflammation.
View Article and Find Full Text PDFBioorg Chem
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China. Electronic address:
To explore potential anti-inflammatory lead compounds, ten new physalin steroids, including three neophysalins (1, 4, and 9) and seven physalins (2, 3, 5-8, and 10), along with eleven known analogs, were isolated from an ethanol extract of the calyx of Physalis alkekengi. The new structures were rigorously determined through comprehensive HRESIMS, 1D/2D-NMR, and X-ray diffraction analysis. Among these compounds, 1 was identified as a new 1,10-seco-neophysalin, and 2 was identified as a new 11,15-cyclo-9,10-seco-physalin characterized by an aromatic A-ring.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, People's Republic of China.
Background: Acute lung injury (ALI) is characterized by diffuse alveolar injury and acute non-cardiac pulmonary edema, with high morbidity and mortality. Lysophosphatidylcholine 14:0 (LPC14:0) has anti-inflammatory and anti-oxidative effects in sepsis and bacteremia. We hypothesized that LPC14:0 could be a potential treatment for ALI.
View Article and Find Full Text PDFDrug Des Devel Ther
December 2024
Pharmacy Department, Kunshan Rehabilitation Hospital, Kunshan, Jiangsu, People's Republic of China.
Background: DaYuan Yin (DYY), a traditional Chinese medicine for lung diseases, requires further study to understand how it improves acute lung injury (ALI). This study seeks to elucidate the material basis and molecular mechanisms underlying the treatment of ALI with DYY through network pharmacology, molecular docking, and experimental validation.
Methods: DYY's active components and targets were identified using TCMSP and UHPLC-MS/MS, and a herb-component-target network was created with Cytoscape 3.
J Inflamm Res
November 2024
Affiliated Hospital of Qinghai University, Xining, 810000, People's Republic of China.
Purpose: The effects of 5-methoxytryptophan (5-MTP) on mitophagy in sepsis-induced acute kidney injury (S-AKI) and its possible role in the Nrf2/HO-1 signaling pathway are unclear. In this study, we aimed to examine the levels of serum 5-MTP and mitophagy in patients with S-AKI and to evaluate the influence of 5-MTP on a lipopolysaccharide(LPS)-induced AKI model. Additionally, we sought to elucidate the mechanisms by which 5-MTP regulates mitophagy via Nrf2 mediation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!