Spatial regulation of the cAMP-dependent protein kinase during chemotactic cell migration.

Proc Natl Acad Sci U S A

Department of Pharmacology and the Vermont Cancer Center, The University of Vermont, 149 Beaumont Avenue, HSRF 322, Burlington, VT 05405-0075, USA.

Published: October 2005

Historically, the cAMP-dependent protein kinase (PKA) has a paradoxical role in cell motility, having been shown to both facilitate and inhibit actin cytoskeletal dynamics and cell migration. In an effort to understand this dichotomy, we show here that PKA is regulated in subcellular space during cell migration. Immunofluorescence microscopy and biochemical enrichment of pseudopodia showed that type II regulatory subunits of PKA and PKA activity are enriched in protrusive cellular structures formed during chemotaxis. This enrichment correlates with increased phosphorylation of key cytoskeletal substrates for PKA, including the vasodilator-stimulated phosphoprotein (VASP) and the protein tyrosine phosphatase containing a PEST motif. Importantly, inhibition of PKA activity or its ability to interact with A kinase anchoring proteins inhibited the activity of the Rac GTPase within pseudopodia. This effect correlated with both decreased guanine nucleotide exchange factor activity and increased GTPase activating protein activity. Finally, inhibition of PKA anchoring, like inhibition of total PKA activity, inhibited pseudopod formation and chemotactic cell migration. These data demonstrate that spatial regulation of PKA via anchoring is an important facet of normal chemotactic cell movement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1242330PMC
http://dx.doi.org/10.1073/pnas.0507072102DOI Listing

Publication Analysis

Top Keywords

cell migration
16
chemotactic cell
12
pka activity
12
pka
9
spatial regulation
8
camp-dependent protein
8
protein kinase
8
inhibition pka
8
pka anchoring
8
cell
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!