The aim of this study was to typify cardiorespiratory and metabolic adaptation capacity at race pace of high-level triathletes during simulations of short distance triathlon swimming sector, first transition and cycling sector. Six national and international-level triathletes performed a 1500 m swimming trial followed by a transition and one hour on ergocycle at race pace, with sequenced measures of blood lactate concentration, gas exchange and heart rate recording. The mean speed obtained in the swimming sector was 1.29+/-0.07 m s(-1), matching 98+/-2% of MAS (Maximal Aerobic Speed), lactate concentration 6.8+/-2.1 mM and heart rate 162+/-15 beats min(-1). In the cycling sector, the mean power was 266+/-34 W, matching 77+/-10% of MAP (Maximal Aerobic Power), oxygen uptake 3788+/-327 mL min(-1) (82.8% of VO2max), heart rate 162+/-13 beats min(-1) (92% of maximal HR) and ventilation 112.8+/-20.8 L min(-1). MAS was correlated with performance in swimming sector (r = 0.944; P < 0.05). Despite intake 1.08+/-0.44 L of a solution with 8% of sugars, a significant loss of body weight (2.80%; P < 0.01) was observed. Changes in cycling power, speed and frequency, especially towards the end of the effort, were also found. By contrast, differences in lactate concentration and in cardiorespiratory or metabolic variables between the end of the swimming sector and the end of the first transition did not appear. In conclusion, this study remarks different relative intensities in cycling and swimming sectors. The observed loss of body weight does not modify pedalling economy in national and international-level athletes during the cycling sector, where effort intensity adapts itself to the one found in individual lactate threshold. However, changes in competition tactics and other effects, such as drafting in swimming and cycling, could alter the intensities established in this study for each sector.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2005.08.029DOI Listing

Publication Analysis

Top Keywords

swimming sector
16
cycling sector
12
lactate concentration
12
heart rate
12
short distance
8
distance triathlon
8
swimming
8
triathlon swimming
8
swimming cycling
8
cardiorespiratory metabolic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!