Pretarget sorting of retinocollicular axons in the mouse.

J Comp Neurol

Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.

Published: October 2005

The map of the retina onto the optic tectum is a highly conserved feature of the vertebrate visual system; the mechanism by which this mapping is accomplished during development is a long-standing problem of neurobiology. The early suggestion by Roger Sperry that the map is formed through interactions between retinal ganglion cell axons and target cells within the tectum has gained significant experimental support and widespread acceptance. Nonetheless, reports in a variety of species indicate that some aspects of retinotopic order exist within the optic tract, leading to the suggestion that this "preordering" of retinal axons may play a role in the formation of the mature tectal map. A satisfactory account of pretarget order must provide the mechanism by which such axon order develops. Insofar as this mechanism must ultimately be determined genetically, the mouse suggests itself as the natural species in which to pursue these studies. Quantitative and repeatable methods are required to assess the contribution of candidate genes in mouse models. For these reasons, we have undertaken a quantitative study of the degree of retinotopic order within the optic tract and nerve of wild-type mice both before and after the development of the retinotectal map. Our methods are based on tract tracing using lipophilic dyes, and our results indicate that there is a reestablishment of dorsoventral but not nasotemporal retinal order when the axons pass through the chiasm and that this order is maintained throughout the subsequent tract. Furthermore, this dorsoventral retinotopic order is well established by the day after birth, long before the final target zone is discernible within the tectum. We conclude that pretarget sorting of axons according to origin along the dorsoventral axis of the retina is both spatially and chronologically appropriate to contribute to the formation of the retinotectal map, and we suggest that these methods be used to search for the molecular basis of such order by using available mouse genetic models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716708PMC
http://dx.doi.org/10.1002/cne.20694DOI Listing

Publication Analysis

Top Keywords

retinotopic order
12
pretarget sorting
8
order
8
optic tract
8
retinotectal map
8
map methods
8
axons
5
map
5
sorting retinocollicular
4
retinocollicular axons
4

Similar Publications

The Role of Population Receptive Field Sizes in Higher-Order Visual Dysfunction.

Curr Neurol Neurosci Rep

December 2024

fMRI Unit, Neurology Department Hadassah Medical Organization, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12000, Jerusalem, 91120, Israel.

Purpose Of Review: Population receptive field (pRF) modeling is an fMRI technique used to retinotopically map visual cortex, with pRF size characterizing the degree of spatial integration. In clinical populations, most pRF mapping research has focused on damage to visual system inputs. Herein, we highlight recent work using pRF modeling to study high-level visual dysfunctions.

View Article and Find Full Text PDF

Short association fibres (SAF) are the most abundant fibre pathways in the human white matter. Until recently, SAF could not be mapped comprehensively in vivo because diffusion weighted magnetic resonance imaging with sufficiently high spatial resolution needed to map these thin and short pathways was not possible. Recent developments in acquisition hardware and sequences allowed us to create a dedicated in vivo method for mapping the SAF based on sub-millimetre spatial resolution diffusion weighted tractography, which we validated in the human primary (V1) and secondary (V2) visual cortex against the expected SAF retinotopic order.

View Article and Find Full Text PDF

The quest for higher spatial and/or temporal resolution in functional MRI (fMRI) while preserving a sufficient temporal signal-to-noise ratio (tSNR) has generated a tremendous amount of methodological contributions in the last decade ranging from Cartesian vs. non-Cartesian readouts, 2D vs. 3D acquisition strategies, parallel imaging and/or compressed sensing (CS) accelerations and simultaneous multi-slice acquisitions to cite a few.

View Article and Find Full Text PDF

Retinal waves represent an early form of patterned spontaneous neural activity in the visual system. These waves originate in the retina before eye-opening and propagate throughout the visual system, influencing the assembly and maturation of subcortical visual brain regions. However, because it is technically challenging to ablate retina-derived cortical waves without inducing compensatory activity, the role these waves play in the development of the visual cortex remains unclear.

View Article and Find Full Text PDF

Purpose: Static and dynamic field imperfections are detrimental to functional MRI (fMRI) applications, especially at ultra-high magnetic fields (UHF). In this work, a field camera is used to assess the benefits of retrospectively correcting field perturbations on Blood Oxygen Level Dependent (BOLD) sensitivity in non-Cartesian three-dimensional (3D)-SPARKLING fMRI acquisitions.

Methods: fMRI data were acquired at 1 mm and for a 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!