DNA 8-oxoguanine (8-oxoG) causes transversions and is also implicated in frameshifts. We previously identified the dNTP pool as a likely source of mutagenic DNA 8-oxoG and demonstrated that DNA mismatch repair prevented oxidation-related frameshifts in mononucleotide repeats. Here, we show that both Klenow fragment and DNA polymerase alpha can utilize 8-oxodGTP and incorporate the oxidized purine into model frameshift targets. Both polymerases incorporated 8-oxodGMP opposite C and A in repetitive DNA sequences and efficiently extended a terminal 8-oxoG. The human MutSalpha mismatch repair factor recognized DNA 8-oxoG efficiently in some contexts that resembled frameshift intermediates in the same C or A repeats. DNA 8-oxoG in other slipped/mispaired structures in the same repeats adopted configurations that prevented recognition by MutSalpha and by the OGG1 DNA glycosylase thereby rendering it invisible to DNA repair. These findings are consistent with a contribution of oxidative DNA damage to frameshifts. They also suggest how mismatch repair might reduce the burden of DNA 8-oxoG and prevent frameshift formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1233161PMC
http://dx.doi.org/10.1093/nar/gki813DOI Listing

Publication Analysis

Top Keywords

dna 8-oxog
16
dna
12
mismatch repair
12
recognition mutsalpha
8
8-oxog
6
8-oxoguanine incorporation
4
incorporation dna
4
repeats
4
dna repeats
4
repeats vitro
4

Similar Publications

DNA-Dependent Protein Kinase Catalytic Subunit Prevents Ferroptosis in Retinal Pigment Epithelial Cells.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.

Purpose: The purpose of this study was to investigate the activated core kinases involved in the DNA damage responses (DDR) during ferroptosis of retinal pigment epithelial (RPE) cells in vitro and their regulatory effects on ferroptosis.

Methods: Ferroptosis was induced by erastin in induced RPE (iRPE) cells derived from human umbilical cord mesenchymal stem cells (hUCMSCs), hUCMSCs, and induced pluripotent stem cell-derived RPE (iPSC-RPE) cells. CCK8 was employed to measure the cell viability.

View Article and Find Full Text PDF

8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.

View Article and Find Full Text PDF

Iron regulatory protein 1-deficient mice exhibit hypospermatogenesis.

J Biol Chem

December 2024

Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Giessen, Germany; Hessian Centre of Reproductive Medicine, Justus-Liebig-University Giessen, Giessen, Germany. Electronic address:

Imbalances in testicular iron levels are linked to compromised sperm production and male infertility. Iron regulatory proteins (IRP) 1 and 2 play crucial roles in cellular iron regulation. We investigated the role of IRP1 on spermatogenesis using Irp1-deficient mice (Irp1).

View Article and Find Full Text PDF

Cell-Specific Control of Mammalian Gene Expression Using DNA Repair Inducible Ribozyme Switches.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Hunan University, Changsha, 410082, China.

The ability to control gene expression is vital for elucidating gene functions and developing next-generation therapeutics. Current techniques are challenged by the lack of cell-specific control designs or immunogenicity risk from foreign proteins. We develop a DNA repair inducible ribozyme switch that enables cell-specific control of gene expression in cells and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • OGG1 (8-oxoguanine DNA glycosylase-1) is essential for DNA repair, particularly in removing damaged DNA caused by oxidation, and its deficiency in mice leads to increased obesity and metabolic issues from a high-fat diet (HFD).
  • The study found that OGG1-deficient mice had greater obesity and impaired insulin action compared to wild-type mice, underscoring OGG1's significant role in metabolism and insulin sensitivity.
  • Targeting OGG1 to mitochondria showed protective effects against HFD-induced obesity and insulin resistance, highlighting potential mechanisms that could inform future therapeutic strategies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!