Previous studies have examined pre- and postsynaptic development of the first-order central gustatory relay, located in the rostral nucleus of the solitary tract (NST). This region of the NST is innervated by primary gustatory axons arising from the facial-intermediate nerve. However, a large portion of the gustatory NST is innervated by axons arising from the glossopharyngeal nerve, and although the time course for development of N.VII recipient zones has been defined development of glossopharyngeal afferent terminal fields has not been examined. Moreover, the time course for development of projection neurons located postsynaptic to gustatory afferent axons has not been examined in any portion of the NST. The objectives of the present study were to 1) define the time course for development of N.VII and N.IX terminal fields and 2) examine temporal relationships between development of afferent terminal fields and development of projection neurons located postsynaptic to gustatory afferent axons. To this end, triple fluorescent labeling procedures were used to simultaneously visualize developing axons and projection neurons. Results show that afferent terminal fields develop along the rostrocaudal axis of the NST. Axons of the N.VII terminal field are present in the rostral NST at P1 and develop to approximately P25. Axons and terminal endings of N.IX do not enter the NST until approximately P9-P10, and these terminal fields develop within the intermediate NST until approximately P45. Many NST neurons destined to project axons to the second-order central gustatory relay, located in the caudal parabrachial nucleus (PBN), do not possess axonal connections with the PBN during the first 2-3 weeks of postnatal life. As afferent terminal fields develop, these neurons establish connections with the PBN between the ages of approximately P7 and P45-P60. The delay between afferent terminal field development and development of PBN projection neurons in the N.VII terminal field is approximately 3 weeks. The delay between pre- and postsynaptic development in the N.IX terminal field is approximately 1 week. Potential relationships between pre- and postsynaptic development are discussed, in addition to relationships between anatomical development in the NST and the emergence of taste-guided behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0361-9230(92)90245-sDOI Listing

Publication Analysis

Top Keywords

terminal fields
24
afferent terminal
20
projection neurons
16
terminal field
16
pre- postsynaptic
12
development
12
postsynaptic development
12
time course
12
course development
12
fields develop
12

Similar Publications

Background: Extracellular vesicles (EVs) have garnered significant attention in Alzheimer's disease (AD) research over the past decade, largely due to their potential in diagnostics and therapeutics. Although the investigation of EVs in AD is a relatively recent endeavor, a comprehensive bibliometric analysis of this rapidly growing field has yet to be conducted.

Methods: This study aims to elucidate and synthesize the relationship between EVs and AD, offering critical insights to guide future research and expand therapeutic possibilities.

View Article and Find Full Text PDF

The changing climate could expand northwards in Europe the autumn sowing of cool-season grain legumes to take advantage of milder winters and to escape the increasing risk of terminal drought. Greater frost tolerance is a key breeding target because sudden frosts following mild-temperature periods may produce high winter mortality of insufficiently acclimated plants. The increasing year-to-year climate variation hinders the field-based selection for frost tolerance.

View Article and Find Full Text PDF

Visualized neural network-based vibration control for pigeon-like flexible flapping wings.

ISA Trans

January 2025

School of Artificial Intelligence, Anhui University, Hefei 230601, China. Electronic address:

This study investigates pigeon-like flexible flapping wings, which are known for their low energy consumption, high flexibility, and lightweight design. However, such flexible flapping wing systems are prone to deformation and vibration during flight, leading to performance degradation. It is thus necessary to design a control method to effectively manage the vibration of flexible wings.

View Article and Find Full Text PDF

Background: Mucopolysaccharidosis type I (MPS I - IDUA gene) is a rare autosomal recessive lysosomal storage disorder. Clinical symptoms, including visceral overload, are progressive and typically begin postnatally. Descriptions of hepatosplenomegaly associated with lysosomal pathology are uncommon during the prenatal period.

View Article and Find Full Text PDF

Structural dynamics of a designed peptide pore under an external electric field.

Biophys Chem

December 2024

Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Computational Biophysics Research Group, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Membrane potential is essential in biological signaling and homeostasis maintained by voltage-sensitive membrane proteins. Molecular dynamics (MD) simulations incorporating membrane potentials have been extensively used to study the structures and functions of ion channels and protein pores. They can also be beneficial in designing and characterizing artificial ion channels and pores, which will guide further amino acid sequence optimization through comparison between the predicted models and experimental data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!