The rate of alcohol elimination is highly resistant to acceleration in vivo in well-nourished individuals. The acceleration of ethanol elimination may be achieved by providing the conditions in which the action of alcohol dehydrogenase is not delayed by the insufficiency of the oxidized NAD form. The aim of the study was to verify the theoretically assumed mechanism of accelerating alcohol elimination by administering excessive acetoacetate (Ac-Ac) in the experimental in vitro model. Ac-Ac forming the redox system with beta-hydroxybutyrate (beta-HBA) is the natural acceptor of excessive protons from ethanol oxidation. Ac-Ac and beta-HBA penetrate freely through the cell membranes and are easily assimilated energetic substrates. The examinations were performed using the hepatic homogenates (collected from the cadavers shortly after death) supplemented with ethanol and Ac-Ac. The ethanol levels were determined at 0, 15, 60, 90 and 150 min of the experiment. The findings showed that the equimolar addition of Ac-Ac resulted in a two- to three-fold increase in ethanol oxidation in hepatic homogenates. The biochemical system discussed above resembles the natural way of utilizing the excessive NADH, which is formed during ethanol combustion in chronic alcoholics. The results indicate that further investigations are necessary to assess the clinical importance of this metabolic system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2005.08.002 | DOI Listing |
J Nanobiotechnology
March 2025
Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
Periodontitis, a chronic inflammatory disease caused by bacteria, is characterized by localized reactive oxygen species (ROS) accumulation, leading to an inflammatory response, which in turn leads to the destruction of periodontal supporting tissues. Therefore, antibacterial, scavenging ROS, reducing the inflammatory response, regulating periodontal microenvironment, and alleviating alveolar bone resorption are effective methods to treat periodontitis. In this study, we developed a ROS-responsive injectable hydrogel by modifying hyaluronic acid with 3-amino phenylboronic acid (PBA) and reacting it with poly(vinyl alcohol) (PVA) to form a borate bond.
View Article and Find Full Text PDFChem Commun (Camb)
March 2025
Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
The mechanism and origin of enantioselectivity of palladium-catalyzed redox-relay Heck arylation of 1,1-disubstituted homoallylic alcohols were investigated computationally. The computed mechanism consists of an initial migratory insertion, followed by a β-hydride elimination, and a subsequent re-insertion/elimination process to yield an enol intermediate, which tautomerizes to the more stable carbonyl product. Results from DFT calculations suggest that the key enantiodetermining step is the reinsertion of an alkene intermediate into the Pd-H bond, but not the initial migratory insertion of the substrate into the Pd-Aryl species.
View Article and Find Full Text PDFHeliyon
February 2025
Brazilian Agricultural Research Corporation, Parque Estação Biológica, s/n, Av. Asa Norte, Brasília, CEP 70770-901, Brazil.
The lignin fraction of the lignocellulosic biomass corresponds to 15-30 % wt. This is largely obtained as a by-product of wood pulping to produce cellulose and paper, with the kraft process being the most used by industry. The chemical composition of lignin makes an excellent raw material for obtaining various chemical compounds with industrial applications, such as phenolic resins, biofuels and fine chemical products.
View Article and Find Full Text PDFIn the current work, a palladium-catalyzed C-C bond cleavage reaction of primary alcohols has been developed. This transformation was characterized by a broad substrate scope, superior functional group tolerance, and high efficiency for selective C-C bond cleavage and was then followed by alkynyl-aryl cross coupling. Mechanism studies indicated that the propargyl alcohols underwent β-H elimination to form aldehydes rather than having undergone β-C elimination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!