Covalent attachment of poly(ethylene glycol) (PEG) molecules to drugs, proteins, and liposomes is a proven technology for improving their bioavailability, safety, and efficacy. Qualitative and quantitative analysis of PEG-derivatized molecules is important for both drug development and clinical applications. We previously reported the development of a monoclonal IgM antibody (AGP3) to PEG. We now describe a new IgG1 monoclonal antibody (E11) to PEG and show that it can be used in combination with AGP3 to detect and quantify PEG-derivatized molecules. Both antibodies bound the repeating subunits of the PEG backbone and could detect free PEG and PEG-modified proteins by ELISA, immunoblotting, and flow cytometry. Detection sensitivity increased with the length and the number of PEG chains on pegylated molecules. Both antibodies also efficiently accelerated the clearance of a PEG-modified enzyme in vivo. A sandwich ELISA in which E11/AGP3 were employed as the capture/detection antibodies was developed to detect PEG-modified proteins at concentrations as low as 1.2 ng/mL. In addition, the ELISA could also quantify, in the presence of 10% fetal bovine serum, free methoxy-PEG20,000, PEG2,000-quantum dots, and PEG2,000-liposomes at concentrations as low as 20 ng/mL (1.0 nM), 1.4 ng/mL (3.1 pM), and 2.4 ng/mL (3.13 nM phospholipids), respectively. Finally, we show that the sandwich ELISA could accurately measured the in vivo half-life of a PEG-modified enzyme. These antibodies should be generally applicable to the qualitative and quantitative analysis of all PEG-derivatized molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc050133f | DOI Listing |
Mol Pharm
August 2014
Center for Pharmacogenetics, ‡Department of Pharmaceutical Sciences, School of Pharmacy, and §University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
We have recently designed and developed a dual-functional drug carrier that is based on poly(ethylene glycol) (PEG)-derivatized farnesylthiosalicylate (FTS, a nontoxic Ras antagonist). PEG5K-FTS2 readily form micelles (20-30 nm) and hydrophobic drugs such as paclitaxel (PTX) could be effectively loaded into these micelles. PTX formulated in PEG5K-FTS2 micelles showed an antitumor activity that was more efficacious than Taxol in a syngeneic mouse model of breast cancer (4T1.
View Article and Find Full Text PDFMol Pharm
August 2013
Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
Various PEG-Vitamin E conjugates including d-α-tocopheryl poly(ethylene glycol) succinate 1000 (TPGS) have been extensively studied as a nonionic surfactant in various drug delivery systems. However, limited information is available about the structure-activity relationship of PEG-Vitamin E conjugates as a micellar formulation for paclitaxel (PTX). In this study, four PEG-Vitamin E conjugates were developed that vary in the molecular weight of PEG (PEG2K vs PEG5K) and the molar ratio of PEG/Vitamin E (1/1 vs 1/2) in the conjugates.
View Article and Find Full Text PDFBioconjug Chem
July 2012
Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
Embelin, identified primarily from the Embelia ribes plant, has been shown to be a natural small molecule inhibitor of X-linked inhibitor of apoptosis protein (XIAP). It is also a potent inhibitor of NF-κB activation, which makes it a potentially effective suppressor of tumor cell survival, proliferation, invasion, angiogenesis, and inflammation. However, embelin itself is insoluble in water, which makes it unsuitable for in vivo applications.
View Article and Find Full Text PDFAcc Chem Res
July 2012
Center for Neurosciences and Cell Biology, University of Coimbra, Portugal.
RNA interference (RNAi) is a specific gene-silencing mechanism that can be mediated by the delivery of chemical synthesized small-interfering RNA (siRNA). RNAi might constitute a novel therapeutic approach for cancer treatment because researchers can easily design siRNA molecules to inhibit, specifically and potently, the expression of any protein involved in tumor initiation and progression. Despite all the potential of siRNA as a novel class of drugs, the limited cellular uptake, low biological stability, and unfavorable pharmacokinetics of siRNAs have limited their application in the clinic.
View Article and Find Full Text PDFACS Nano
January 2012
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA.
We have designed, prepared, and tested a new set of multidentate catechol- and polyethylene glycol (PEG)-derivatized oligomers, OligoPEG-Dopa, as ligands that exhibit strong affinity to iron oxide nanocrystals. The ligands consist of a short poly(acrylic acid) backbone laterally appended with several catechol anchoring groups and several terminally functionalized PEG moieties to promote affinity to aqueous media and to allow further coupling to target molecules (bio and others). These multicoordinating PEGylated oligomers were prepared using a relatively simple chemical strategy based on N,N'-dicyclohexylcarbodiimide (DCC) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) condensation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!