Many genes elicit their actions through their expression in precise spatial patterns in tissues. Photoregulated expression systems offer a means to remotely pattern gene expression in tissues. Using currently available photopatterning methods, gene expression is only transient. Herein is described a general method to permanently alter a cell's genome under the control of light. The photocaged estrogen receptor (ER) antagonists, nitroveratryl-hydroxytamoxifen (Nv-HTam) and nitroveratryl-hydroxytamoxifen aziridine (Nv-HTaz), mediate exposure-dependent recombination in cells expressing the Cre-ER, a fusion of the site-specific recombinase Cre and ER. Both Nv-HTam and Nv-HTaz only activate recombination by Cre-ER after exposure to light. When released only intracellularly, the covalent-modifying Taz can mediate significant amounts of recombination in an exposure-dependent manner. Nv-HTaz and Cre-ER represent perhaps the first compound that can be used to photopattern gene expression through recombination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2512263 | PMC |
http://dx.doi.org/10.1021/ja0531226 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!