Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present the Nearest Subclass Classifier (NSC), which is a classification algorithm that unifies the flexibility of the nearest neighbor classifier with the robustness of the nearest mean classifier. The algorithm is based on the Maximum Variance Cluster algorithm and, as such, it belongs to the class of prototype-based classifiers. The variance constraint parameter of the cluster algorithm serves to regularize the classifier, that is, to prevent overfitting. With a low variance constraint value, the classifier turns into the nearest neighbor classifier and, with a high variance parameter, it becomes the nearest mean classifier with the respective properties. In other words, the number of prototypes ranges from the whole training set to only one per class. In the experiments, we compared the NSC with regard to its performance and data set compression ratio to several other prototype-based methods. On several data sets, the NSC performed similarly to the k-nearest neighbor classifier, which is a well-established classifier in many domains. Also concerning storage requirements and classification speed, the NSC has favorable properties, so it gives a good compromise between classification performance and efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2005.187 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!