A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier. | LitMetric

The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier.

IEEE Trans Pattern Anal Mach Intell

Department of Mediamatics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands.

Published: September 2005

We present the Nearest Subclass Classifier (NSC), which is a classification algorithm that unifies the flexibility of the nearest neighbor classifier with the robustness of the nearest mean classifier. The algorithm is based on the Maximum Variance Cluster algorithm and, as such, it belongs to the class of prototype-based classifiers. The variance constraint parameter of the cluster algorithm serves to regularize the classifier, that is, to prevent overfitting. With a low variance constraint value, the classifier turns into the nearest neighbor classifier and, with a high variance parameter, it becomes the nearest mean classifier with the respective properties. In other words, the number of prototypes ranges from the whole training set to only one per class. In the experiments, we compared the NSC with regard to its performance and data set compression ratio to several other prototype-based methods. On several data sets, the NSC performed similarly to the k-nearest neighbor classifier, which is a well-established classifier in many domains. Also concerning storage requirements and classification speed, the NSC has favorable properties, so it gives a good compromise between classification performance and efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2005.187DOI Listing

Publication Analysis

Top Keywords

neighbor classifier
16
nearest neighbor
12
classifier
11
nearest
8
nearest subclass
8
subclass classifier
8
nearest classifier
8
cluster algorithm
8
variance constraint
8
classifier compromise
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!