Coxsackievirus B3 (CVB3) infects multiple organs of humans and causes different diseases such as myocarditis, pancreatitis, and meningitis. However, the mechanisms of organ-specific tropism are poorly understood. Coxsackievirus and adenovirus receptor (CAR) have been known to be important determinants for tissue tropism. However, current data on CAR mRNA expression in certain organs of mouse did not correlate well with the susceptibility of the respective tissues, suggesting that intracellular proteins may also play important roles in the regulation of viral infectivity through interaction with viral RNA. To search for such proteins and their interacting sites, we performed in situ hybridization to detect viral RNA in the organs of 4-week- and 10-week-old CVB3-infected mice and then correlated the data to patterns of host protein-viral RNA interactions. We found that heart and pancreas are the most heavily infected organs while the kidney remains highly resistant to the virus. The brain exhibited localized foci of viral replication, while the heart and liver showed random distribution of CVB3 RNA. The exocrine pancreas is highly susceptible to CVB3 infection but the endocrine cell type is resistant. In contrast to infections in other organs, mouse heart appears more resistant to CVB3 infection with increasing age. This resistance to infection in the kidney and older heart correlates well with the interaction of a 28 kDa mouse protein with the antisense sequence of nucleotides 210-529 of CVB3 5UTR. In addition, more intensified protein interactions were found within the nucleotides 530-630, a region that contains the internal ribosome entry site, which supports the previous findings that this segment plays critical roles in regulation of viral replication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmv.20470 | DOI Listing |
Poult Sci
January 2025
Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271017, China; Shandong Provincial Key Laboratory of Zoonoses, Shandong, Taian, 271017, China. Electronic address:
Duck circovirus (DuCV) infected multiple breeds of ducks and was widespread in duck factories worldwide. Infected ducks exhibited feathering disorder, growth retardation and immunosuppression, which lead to secondary infection with other pathogens easily. But till now, there has been little research on the study of DuCV due to the absence of appropriate cultural measures.
View Article and Find Full Text PDFPhysiol Res
December 2024
Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart.
View Article and Find Full Text PDFVirol Sin
January 2025
Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China. Electronic address:
Int J Mol Sci
December 2024
Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
Viral vector delivery of gene therapy represents a promising approach for the treatment of numerous retinal diseases. Adeno-associated viral vectors (AAV) constitute the primary gene delivery platform; however, their limited cargo capacity restricts the delivery of several clinically relevant retinal genes. In this study, we explore the feasibility of employing high-capacity adenoviral vectors (HC-AdVs) as alternative delivery vehicles, which, with a capacity of up to 36 kb, can potentially accommodate all known retinal gene coding sequences.
View Article and Find Full Text PDFMolecules
December 2024
Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan.
No effective vaccines or treatments are currently available for severe fever with thrombocytopenia syndrome (SFTS), a fatal tick-borne infectious disease caused by the SFTS virus (SFTSV). This study evaluated the potential of In-labeled anti-SFTSV antibodies targeting SFTSV structural proteins as single-photon emission computed tomography (SPECT) imaging agents for the selective visualization of SFTSV-infected sites. This study used nuclear medicine imaging to elucidate the pathology of SFTS and assess its therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!