Folbos, a new foldback element in rice.

Genes Genet Syst

The Norman Borlaug Institute for Training and Research in Plant Sciences, The University of Leicester, UK.

Published: April 2005

A new class I foldback element, Folbos, has been discovered in O. sativa L. Its long terminal inverted repeats (IVRs) are 303 and 331 bp long and the left one encodes a short open reading frame of 76 codons. The IVRs consist of inner and outer domains, the latter built up of 6 tandem repeats of about 30 bp each. The central region is represented by 90 bp conservative stretch adjacent to a variable length (19-33 bp) A-tail, which in most cases includes the sequence 5'-TGACTT-3'. Folbos targets AT-rich regions and the insertion results in 7 bp target site duplications. Half of the copies found in annotated sequences of O. sativa japonica cv. Nipponbare are positioned in close proximity to (< 1kb) or within the transcribed regions, thus they have the potential to contribute to plant genome evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1266/ggs.80.141DOI Listing

Publication Analysis

Top Keywords

foldback element
8
folbos foldback
4
element rice
4
rice class
4
class foldback
4
element folbos
4
folbos discovered
4
discovered sativa
4
sativa long
4
long terminal
4

Similar Publications

Development of a Novel Colorimetric pH Biosensor Based on A-Motif Structures for Rapid Food Freshness Monitoring and Spoilage Detection.

Biosensors (Basel)

December 2024

International Research Center for Food and Health, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Process & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

Accurate methods for assessing food freshness through colorimetric pH response play a critical role in determining food spoilage and ensuring food quality standards. This study introduces a novel unlabeled DNA sequence, poly-dA, designed to exploit the colorimetric properties of both the single strand and the fold-back A-motif structure in conjunction with gold nanoparticles (AuNPs) under varying pH conditions. When exposed to storage temperatures of 4 °C and 25 °C, the color variations in the AuNP solution, influenced by pH level changes in mutton and sea bass samples' different storage periods, are easily discernible to the naked eye within a minute.

View Article and Find Full Text PDF

Non-G Base Tetrads.

Molecules

August 2022

Instituto de Química Física 'Rocasolano', CSIC, Serrano 119, 28006 Madrid, Spain.

Tetrads (or quartets) are arrangements of four nucleobases commonly involved in the stability of four-stranded nucleic acids structures. Four-stranded or quadruplex structures have attracted enormous attention in the last few years, being the most extensively studied guanine quadruplex (G-quadruplex). Consequently, the G-tetrad is the most common and well-known tetrad.

View Article and Find Full Text PDF

Balancers are rearranged chromosomes used in to maintain deleterious mutations in stable populations, preserve sets of linked genetic elements and construct complex experimental stocks. Here, we assess the phenotypes associated with breakpoint-induced mutations on commonly used third chromosome balancers and show remarkably few deleterious effects. We demonstrate that a breakpoint in causes loss of radiation-induced apoptosis and a breakpoint in causes loss of fucosylation in nervous and intestinal tissue-the latter study providing new markers for intestinal cell identity and challenging previous conclusions about the regulation of fucosylation.

View Article and Find Full Text PDF

Similar progressive leaf lesion phenotypes, named conring for "concentric ring," were identified in 10 independently derived maize lines. Complementation and mapping experiments indicated that the phenotype had the same genetic basis in each line - a single recessive gene located in a 1.1-Mb region on chromosome 2.

View Article and Find Full Text PDF

In the promoter of c-KIT proto-oncogene, whose deregulation has been implicated in many cancers, three G-rich regions (kit1, kit* and kit2) are able to fold into G-quadruplexes. While kit1 and kit2 have been studied in depth, little information is available on kit* folding behavior despite its key role in regulation of c-KIT transcription. Notably, kit* contains consensus sites for SP1 and AP2 transcription factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!