Down-regulation of neutral sphingomyelinase in androgen-dependent smooth muscle.

J Surg Res

Department of Biochemistry, West Virginia University, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia 26506-9223, USA.

Published: January 2006

Background: During puberty, proliferation of guinea pig seminal vesicle smooth muscle (SVM) is mediated by androgen-induced basal release of norepinephrine (NE), signaling through the post-junctional alpha1-adrenoceptor. In the adult, the SVM is terminally differentiated, such that cell number is androgen resistant. Sphingomyelinase activation generates second messenger ceramides, which in vascular smooth muscle have been reported to counter the alpha1-adrenoceptor-mediated contractile response and activate apoptosis. Accordingly, we hypothesized that SVM sphingomyelinase down-regulation by androgen may facilitate NE-induced proliferation and subsequent transition to the terminally differentiated state of the adult.

Materials And Methods: Pre-pubertal and adult guinea pigs were orchiectomized and treated+/-dihydrotestosterone (DHT). SVM was harvested free of epithelium, frozen, and stored for enzymatic analyses. Using radioactive sphingomyelin substrate, optimized reaction conditions for both neutral and acidic sphingomyelinase were established and used to assay the enzymes.

Results: Although acidic sphingomyelinase was stimulated by androgen in both the proliferative and amitotic phases of smooth muscle development, neutral sphingomyelinase was irreversibly reduced 35% at the time of DHT-induced proliferation.

Conclusions: Decreased concentrations of a second messenger ceramide attenuate apoptosis and increase sensitivity to alpha(1)-adrenoceptor-mediated mitogenic signaling. Therefore, DHT-dependent suppression of neutral sphingomyelinase activity may reduce ceramide concentrations and facilitate NE-dependent smooth muscle growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2005.06.035DOI Listing

Publication Analysis

Top Keywords

smooth muscle
20
neutral sphingomyelinase
12
terminally differentiated
8
second messenger
8
acidic sphingomyelinase
8
sphingomyelinase
7
smooth
5
muscle
5
down-regulation neutral
4
sphingomyelinase androgen-dependent
4

Similar Publications

Epstein-Barr virus-associated smooth muscle tumors (EBV-SMTs) represent a rare category of soft tissue tumors that are predominantly seen in individuals with compromised immune systems. Pathologically, EBV-SMT has malignant potential because of its unpredictable nature. These tumors can manifest at various anatomical sites or even multiple lesions in different locations.

View Article and Find Full Text PDF

Background: Recent studies show that hyperactivation of mTOR (mammalian target of rapamycin) signaling plays a causal role in the development of thoracic aortic aneurysm and dissection. Modulation of PP2A (protein phosphatase 2A) activity has been shown to be of significant therapeutic value. In light of the effects that PP2A can exert on the mTOR pathway, we hypothesized that PP2A activation by small-molecule activators of PP2A could mitigate AA progression in Marfan syndrome (MFS).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.

View Article and Find Full Text PDF

In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.

View Article and Find Full Text PDF

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!