Molecular dynamics simulations of retinal in rhodopsin: from the dark-adapted state towards lumirhodopsin.

Biochemistry

Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.

Published: September 2005

The formation of photointermediates and conformational changes observed in the retinal chromophore of bilayer-embedded rhodopsin during the early steps of the protein activation have been studied by molecular dynamics (MD) simulation. In particular, the lysine-bound retinal has been examined, focusing on its conformation in the dark-adapted state (10 ns) and on the early steps after the isomerization of the 11-cis bond to trans (up to 10 ns). The parametrization for the chromophore is based on a recent quantum study [Sugihara, M., Buss, V., Entel, P., Elstner, M., and Frauenheim, T. (2002) Biochemistry 41, 15259-15266] and shows good conformational agreement with recent experimental results. The isomerization, induced by switching the function governing the dihedral angle for the C11=C12 bond, was repeated with several different starting conformations. From the repeated simulations, it is shown that the retinal model exhibits a conserved activation pattern. The conformational changes are sequential and propagate outward from the C11=C12 bond, starting with isomerization of the C11=C12 bond, then a rotation of methyl group C20, and followed by increased fluctuations at the beta-ionone ring. The dynamics of these changes suggest that they are linked with photointermediates observed by spectroscopy. The exact moment when these events occur after the isomerization is modulated by the starting conformation, suggesting that retinal isomerizes through multiple pathways that are slightly different. The amplitudes of the structural fluctuations observed for the protein in the dark-adapted state and after isomerization of the retinal are similar, suggesting a subtle mechanism for the transmission of information from the chromophore to the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0506019DOI Listing

Publication Analysis

Top Keywords

dark-adapted state
12
c11=c12 bond
12
molecular dynamics
8
simulations retinal
8
conformational changes
8
early steps
8
retinal
6
isomerization
5
dynamics simulations
4
retinal rhodopsin
4

Similar Publications

The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.

View Article and Find Full Text PDF

In this study, the oligomerization pattern of apo- and holoforms of the Orange Carotenoid Protein (OCP) was examined under different conditions such as photoactivation state, concentration, and carotenoid embedment using analytical ultracentrifugation. Furthermore, studies were conducted on OCP constructs carrying point mutations of amino acid residues affecting OCP oligomerization. Our findings reveal that the concentration-dependent dimerization of dark-adapted OCP holoprotein from Synechocystis sp.

View Article and Find Full Text PDF

Photosynthetic Induction Characteristics in Saplings of Four Sun-Demanding Trees and Shrubs.

Plants (Basel)

January 2025

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China.

Light serves as the unique driving force of photosynthesis in plants, yet its intensity varies over time and space, leading to corresponding changes in the photosynthetic rate. Here, the photosynthetic induction response under constant and fluctuating light was examined in naturally occurring saplings of four sun-demanding woody species, . L.

View Article and Find Full Text PDF

Purpose: Ambient light exposure is linked to myopia development in children and affects myopia susceptibility in animal models. Currently, it is unclear which signals mediate the effects of light on myopia. All- retinoic acid (atRA) and dopamine (DA) oppositely influence experimental myopia and may be involved in the retino-scleral signaling cascade underlying myopic eye growth.

View Article and Find Full Text PDF

Morphological and functional observations of a novel model of retinal ischemia injury induced by bilateral carotid artery stenosis in mice.

Int J Ophthalmol

December 2024

Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.

Aim: To investigate the features of retinal ischemic injuries in a novel mouse model with bilateral carotid artery stenosis (BCAS).

Methods: BCAS was induced with microcoil implantation in 6-8-week-old C57BL6 mice. Cerebral blood flow was monitored at 2, 7, and 28d postoperatively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!