Conventional centrosomes are absent from a female meiotic spindle in many animals. Instead, chromosomes drive spindle assembly, but the molecular mechanism of this acentrosomal spindle formation is not well understood. We have screened female sterile mutations for defects in acentrosomal spindle formation in Drosophila female meiosis. One of them, remnants (rem), disrupted bipolar spindle morphology and chromosome alignment in non-activated oocytes. We found that rem encodes a conserved subunit of Cdc2 (Cks30A). As Drosophila oocytes arrest in metaphase I, the defect represents a new Cks function before metaphase-anaphase transition. In addition, we found that the essential pole components, Msps and D-TACC, were often mislocalized to the equator, which may explain part of the spindle defect. We showed that the second cks gene cks85A, in contrast, has an important role in mitosis. In conclusion, this study describes a new pre-anaphase role for a Cks in acentrosomal meiotic spindle formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1371029 | PMC |
http://dx.doi.org/10.1038/sj.embor.7400529 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!