Damping effects on the response of maxillary incisor subjected to a traumatic impact force: a nonlinear finite element analysis.

J Dent

Graduate Institute of Oral Sciences, Taipei Medical University, Taipei, and Department of Anesthesiology, Min-Sheng General Hospital, Taoyuan, Taiwan, ROC.

Published: April 2006

AI Article Synopsis

  • The study aimed to assess how damping affects stress concentration in impacted maxillary incisors.
  • Various damping ratios were tested using an in vivo method and a finite element model was created to analyze dental trauma.
  • Results showed that higher damping ratios reduced peak stress in the impacted incisor and prolonged the duration of stress presence, highlighting the protective role of teeth's damping properties during trauma.

Article Abstract

Objectives: The aim of this study was to evaluate the effects of damping on stress concentration in an impacted incisor.

Methods: Damping ratios of maxillary incisors were tested using an in vivo modal testing method. A finite element model of the upper central incisor was established for dental trauma analysis. To assess the effect of damping properties on induced stresses in the traumatized incisors, equivalent stresses in the finite element model with various damping ratios were calculated for comparison. The mechanisms of cushioning properties of the upper incisors on traumatic injuries were assessed by profiling the stress distributions in the incisor model sequentially with time.

Results: The measured damping ratio of maxillary incisors was 0.146+/-0.037. When the incisor was subjected to an impact force, high stresses were concentrated at the labial and lingual incisor edges, cervical ridge, and the area around root apex. When the damping ratios of the incisor model were set at 10- and 50-fold of the measured values, the peak stresses induced near the impact site of the incisor model were reduced from 24.0 to 23.2 and 15.9 MPa, respectively. On the other hand, the peak stress lagged and the stress existence period increased when the damping properties were taken into consideration.

Conclusions: Damping properties of teeth provide protection to the tooth during traumatic injury by decreasing the peak stress magnitude due to release of strain energy over a longer period.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdent.2005.06.007DOI Listing

Publication Analysis

Top Keywords

finite element
12
damping ratios
12
damping properties
12
incisor model
12
damping
9
incisor subjected
8
impact force
8
maxillary incisors
8
element model
8
peak stress
8

Similar Publications

Waterborne bacteria pose a serious hazard to human health, hence a precise detection method is required to identify them. A photonic crystal fiber sensor that takes into account the dangers of aquatic bacteria has been suggested, and its optical characteristics in the THz range have been quantitatively assessed. The PCF sensor was designed and examined as computed in Comsol Multiphysics, a program in which uses the method of "Finite Element Method" (FEM).

View Article and Find Full Text PDF

: The purpose of this study was to investigate dynamic responses of Lenke1B+ spines of adolescent scoliosis patients to different frequencies. : Modal analysis, harmonic response analysis and transient dynamics of a full spine model inverted by the finite element method using Abaqus. : The first-order axial resonance frequency of 4.

View Article and Find Full Text PDF

Biomechanical study of elbow joint: different stages after the elbow anterior capsule injury.

Acta Bioeng Biomech

September 2024

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education.

: Elbow contracture is a common complication post-elbow trauma, the biomechanical environment after anterior capsule injury was complex. This study aimed to use a finite element model to investigate the biomechanical environment within elbow capsule and its surrounding tissues at various stages after anterior capsule injury. : A finite element model of the elbow joint, incorporating muscle activation behavior, was developed to simulate elbow flexion under normal condition (no injury) and at 2, 4, 6 and 8 weeks following anterior joint capsular injury.

View Article and Find Full Text PDF

The biomechanical, morphological and ecophysiological properties of plant seed/fruit structures are adaptations that support survival in unpredictable environments. High phenotypic variability of noxious and invasive weed species such as Raphanus raphanistrum (wild radish) allow diversification into new environmental niches. Dry indehiscent fruits (thick and lignified pericarp [fruit coat] enclosing seeds) have evolved many times independently.

View Article and Find Full Text PDF

Relativistic and electron-correlation effects in static dipole polarizabilities for group 12 elements.

Phys Chem Chem Phys

January 2025

Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany.

In this study, we report a comprehensive calculation of the static dipole polarizabilities of group 12 elements using the finite-field approach combined with the relativistic coupled-cluster method, including single, double, and perturbative triple excitations. Relativistic effects are systematically investigated, including scalar-relativistic, spin-orbit coupling (SOC), and fully relativistic Dirac-Coulomb contributions. The final recommended polarizability values are 37.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!