Glycogen storage disease type II (GSD-II) patients manifest symptoms of muscular dystrophy secondary to abnormal glycogen storage in cardiac and skeletal muscles. For GSD-II, we hypothesized that a fully deleted adenovirus (FDAd) vector expressing hGAA via nonviral regulatory elements (PEPCK promoter/ApoE enhancer) would facilitate long-term efficacy and decrease propensity to generate anti-hGAA antibody responses against hepatically secreted hGAA. Intravenous delivery of FDAdhGAA into GAA-tolerant or nontolerant GAA-KO mice resulted in long-term hepatic secretion of hGAA. Specifically, nontolerant mice achieved complete reversal of cardiac glycogen storage and near-complete skeletal glycogen correction for at least 180 days and tolerant mice for minimally 300 days coupled with the preservation of muscle strength. Anti-hGAA antibody levels in both mouse strains were significantly less relative to those previously generated by CMV-driven hGAA expression in nontolerant GAA-KO mice. However, plasma GAA levels decreased in nontolerant GAA-KO mice despite long-term intrahepatic GAA expression from the persistent vector. This intriguing result is discussed in light of other examples of "tolerance" induction by gene-transfer-based approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymthe.2005.08.006DOI Listing

Publication Analysis

Top Keywords

glycogen storage
12
nontolerant gaa-ko
12
gaa-ko mice
12
fully deleted
8
deleted adenovirus
8
glycogen correction
8
anti-hgaa antibody
8
mice
6
glycogen
5
nontolerant
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!