The presence of oxidized phosphatidylserine on Fas-mediated apoptotic cell surface.

Biochim Biophys Acta

Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, 86 Nishi-cho, Yonago 683-8503, Japan.

Published: October 2005

A growing body of evidence suggests that phosphatidylserine (PS) oxidation is linked with its transmembrane migration from the inner to the outer leaflet of the plasma membrane during apoptosis. However, there is no direct evidence for the presence of oxidized PS (PSox) on the surface of cells undergoing apoptosis. The present study was performed to detect PSox externalized to the cell surface after Fas engagement in Jurkat cells. Treatment of Jurkat cells with anti-Fas antibody induced caspase-3 activation, chromatin condensation, PS externalization, generation of reactive oxygen species, intracellular glutathione depletion, disruption of mitochondrial transmembrane potential and release of cytochrome c from mitochondria. To determine externalized PS and phosphatidylethanolamine (PE), Jurkat cells were treated with anti-Fas antibody and then labeled with membrane-impermeable fluorescamine, a probe for visualizing lipids that contain primary amino groups. Their total lipids were extracted and subjected to two-dimensional high-performance thin-layer chromatography (HPTLC). The HPTLC plate was sprayed with N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride to detect phospholipid hydroperoxides. PSox was present in small amounts within but not on the surface of normal cells. Treatment with anti-Fas antibody increased PSox within the cells and caused PSox to appear on the cell surface. In contrast, PE on the surface of Fas-ligated cells was not oxidized. Thus, the present study demonstrates for the first time the presence of PSox both within and on the surface of apoptotic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2005.08.011DOI Listing

Publication Analysis

Top Keywords

cell surface
12
jurkat cells
12
anti-fas antibody
12
presence oxidized
8
psox surface
8
cells
8
cells treatment
8
surface
7
psox
6
oxidized phosphatidylserine
4

Similar Publications

Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.

View Article and Find Full Text PDF

Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.

View Article and Find Full Text PDF

Background: Three dimensional (3D) cell cultures can be effectively used for drug discovery and development but there are still challenges in their general application to high-throughput screening. In this study, we developed a novel high-throughput chemotherapeutic 3D drug screening system for gastric cancer, named 'Cure-GA', to discover clinically applicable anticancer drugs and predict therapeutic responses.

Methods: Primary cancer cells were isolated from 143 fresh surgical specimens by enzymatic treatment.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is a prevalent and highly lethal malignancy in Asia. Recent advancements in immune checkpoint inhibitors (ICIs) have markedly transformed the systemic therapy landscape for ESCC. Anti-PD-1-based combination with chemotherapy or with ipilimumab, an anti-CTLA-4 antibody, have been established as the new standard first-line treatments for patients with advanced ESCC.

View Article and Find Full Text PDF

Electrolyte engineering has emerged as an effective strategy for stabilizing Zn-metal anodes. However, a single solute or solvent additive is far from sufficient to meet the requirements for electrolyte cycling stability. Here, we report a new-type high-entropy electrolyte composed of equal molar amounts of Zn(OTf)2 and LiOTf, along with equal volumes of H2O, triethyl phosphate, and dimethyl sulfoxide, which enhances electrolyte stability by increasing solvation entropy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!