A neurophysiological study of the detrimental effects of alprazolam on human action monitoring.

Brain Res Cogn Brain Res

Centre d'Investigació de Medicaments, Institut de Recerca, Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau (HSCSP), Departament de Farmacologia i Terapèutica, Universitat Autònoma de Barcelona, Spain.

Published: October 2005

In order to adapt their behavior to different unexpected situations, humans need to be able to monitor their performance and detect and correct errors. Benzodiazepines have long been shown to impair performance in humans, but the performance-related neurophysiological processes targeted by these drugs remain largely unknown. In the present article, we assessed the impact of alprazolam administration on relevant aspects of action monitoring, i.e., the monitoring of response conflict and the detection and correction of errors by means of neurophysiological measures. Multichannel event-related brain potentials (ERPs) were recorded to assess the impact of the benzodiazepine alprazolam (0.25 mg and 1.00 mg) on action monitoring and motor preparation in a group of twelve healthy male volunteers who participated in a double-blind cross-over placebo-controlled clinical trial involving a letter flanker task. Error detection was evaluated using the error-related negativity (ERN); response conflict on correct trials was measured by means of the N2 amplitude difference between congruent and incongruent trials; motor preparation was assessed by means of the lateralized readiness potentials (LRPs); and post-error adjustments were assessed by measuring post-error slowing in reaction time. Alprazolam significantly reduced the amplitude of the ERN and the number of corrective responses and increased reaction time and LRP latencies. The drug had no effect on amplitude differences in the N2 component between congruent and incongruent trials or on post-error slowing. Thus, alprazolam was shown to affect brain correlates of error detection (ERN) and motor preparation (LRPs), while it did not disturb conflict monitoring on correct trials (N2) or post-error adjustments of behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cogbrainres.2005.08.009DOI Listing

Publication Analysis

Top Keywords

action monitoring
12
motor preparation
12
response conflict
8
error detection
8
correct trials
8
congruent incongruent
8
incongruent trials
8
post-error adjustments
8
post-error slowing
8
reaction time
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!