AI Article Synopsis

  • The study aimed to explore hearing impairment in a Greek family with a genetic form of otosclerosis and investigate potential genetic links to known otosclerosis-related genes and mutations in the NOG gene.
  • Audiological assessments revealed that affected family members initially experienced conductive hearing loss which progressed to include sensorineural components, leading to complete sensorineural loss in some cases.
  • The research concluded that the identified otosclerosis does not link with established genetic loci, suggesting genetic diversity and that mutations in the NOG gene are not responsible for the condition in this family.

Article Abstract

Objective: The aim of our study was to characterize the hearing impairment in a large multigenerational Greek family with autosomal dominant nonsyndromic otosclerosis and to perform genetic linkage analysis to known otosclerosis loci and collagen genes. In addition, we looked for mutations in the NOG gene to rule out congenital stapes ankylosis syndrome.

Methods: Audiological analysis of the affected persons was based on multiple linear regression (MLR) analysis and construction of age-related typical audiograms (ARTA). Genotyping of microsatellite DNA polymorphisms for known otosclerosis (OTSC) loci or collagen genes and linkage analysis using the MLINK computer program were performed. The coding region of the NOG gene was screened for mutations by direct DNA sequencing.

Results: The hearing loss in this family appears in childhood as conductive, but soon becomes mixed. Because the additional sensorineural component is progressive, this finally has lead to a pure sensorineural hearing loss in some family members, as the conductive component is masked. Audiological analysis showed an age-independent conductive component and a progressive frequency-specific sensorineural component. Linkage analysis excluded linkage to the four known otosclerosis loci (OTSC1, OTSC2, OTSC3, and OTSC5), as well as to the COL1A1 and COL1A2 genes. Mutation analysis of the coding region of the NOG gene did not reveal any disease causing mutation.

Conclusions: This study represents the first description of a detailed audiological analysis in a large pedigree segregating otosclerosis as a monogenic autosomal dominant trait. Exclusion of the four known otosclerosis loci in this family shows that monogenic otosclerosis is a genetically heterogeneous disease involving at least five different genes. A mutation in the NOG gene is not the underlying molecular mechanism of the early onset otosclerosis segregating in this family.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijporl.2005.08.012DOI Listing

Publication Analysis

Top Keywords

linkage analysis
16
nog gene
16
otosclerosis loci
12
audiological analysis
12
otosclerosis
9
analysis
9
nonsyndromic otosclerosis
8
analysis large
8
autosomal dominant
8
loci collagen
8

Similar Publications

Soybean [Glycine max (L.) Merrill] is one of the most widely grown legumes in the world, with Brazil being its largest producer and exporter. Breeding programs in Brazil have resulted from multiple cycles of selection and recombination starting from a small number of USA cultivar ancestors in the 1950s and 1960s years.

View Article and Find Full Text PDF

Systematic bias in malaria parasite relatedness estimation.

G3 (Bethesda)

January 2025

Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France.

Genetic studies of Plasmodium parasites increasingly feature relatedness estimates. However, various aspects of malaria parasite relatedness estimation are not fully understood. For example, relatedness estimates based on whole-genome-sequence (WGS) data often exceed those based on sparser data types.

View Article and Find Full Text PDF

Purpose: Several studies suggest a linkage between PCOS and autoimmunity with a high frequency of chronic autoimmune thyroiditis (AIT) reported in PCOS patients, however, this subject remains controversial. The aim of this study was to investigate the prevalence of AIT in PCOS women and identify parameters that would serve as independent predictors of AIT.

Methods: Two hundred fifty seven (257) PCOS patients according to the NIH criteria and one hundred forty three (143) controls, women with normal menstrual cycles and without clinical or biochemical hyperandrogenism, were recruited for the study.

View Article and Find Full Text PDF

Discoidin domain receptors (DDR) are categorized under tyrosine kinase receptors (RTKs) and play a crucial role in various etiological conditions such as cancer, fibrosis, atherosclerosis, osteoarthritis, and inflammatory diseases. The structural domain rearrangement of DDR1 and DDR2 involved six domains of interest namely N-terminal DS, DS-like, intracellular juxtamembrane, transmembrane juxtamembrane, extracellular juxtamembrane intracellular kinase domain, and the tail portion contains small C-tail linkage. DDR has not been explored to a wide extent to be declared as a prime target for any particular pathological condition.

View Article and Find Full Text PDF

Genetic diversity and selection signatures in sheep breeds.

J Appl Genet

January 2025

Departamento de Ciências Exatas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil.

Natural and artificial selection in domesticated animals can cause specific changes in genomic regions known as selection signatures. Our study used the integrated haplotype score (iHS) and Tajima's D tests within non-overlapping windows of 100 kb to identify selection signatures, in addition to genetic diversity and linkage disequilibrium estimates in 9498 sheep from breeds in Ireland (Belclare, Charollais, Suffolk, Texel, and Vendeen). The mean observed and expected heterozygosity for all the sheep breeds were 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!