Introduction: Epidemiological evidence strongly links fish oil, which is rich in docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), with low incidences of several types of cancer. The inhibitory effects of omega-3 polyunsaturated fatty acids on cancer development and progression are supported by studies with cultured cells and animal models. Propofol (2,6-diisopropylphenol) is the most extensively used general anesthetic-sedative agent employed today and is nontoxic to humans at high levels (50 microg/ml). Clinically relevant concentrations of propofol (3 to 8 microg/ml; 20 to 50 microM) have also been reported to have anticancer activities. The present study describes the synthesis, purification, characterization and evaluation of two novel anticancer conjugates, propofol-docosahexaenoate (propofol-DHA) and propofol-eicosapentaenoate (propofol-EPA).

Methods: The conjugates linking an omega-3 fatty acid, either DHA or EPA, with propofol were synthesized and tested for their effects on migration, adhesion and apoptosis on MDA-MB-231 breast cancer cells.

Results: At low concentrations (25 microM), DHA, EPA or propofol alone or in combination had minimal effect on cell adhesion to vitronectin, cell migration against serum and the induction of apoptosis (only 5 to 15% of the cells became apoptotic). In contrast, the propofol-DHA or propofol-EPA conjugates significantly inhibited cell adhesion (15 to 30%) and migration (about 50%) and induced apoptosis (about 40%) in breast cancer cells.

Conclusion: These results suggest that the novel propofol-DHA and propofol-EPA conjugates reported here may be useful for the treatment of breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1242121PMC
http://dx.doi.org/10.1186/bcr1036DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
acid dha
8
dha epa
8
epa propofol
8
cell adhesion
8
propofol-dha propofol-epa
8
propofol-epa conjugates
8
cancer
6
anticancer properties
4
properties propofol-docosahexaenoate
4

Similar Publications

Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.

Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.

View Article and Find Full Text PDF

Leveraging Optical Anisotropy of the Morpho Butterfly Wing for Quantitative, Stain-Free, and Contact-Free Assessment of Biological Tissue Microstructures.

Adv Mater

January 2025

Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.

Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.

View Article and Find Full Text PDF

Quality of life for patients on oncology treatments in the Kingdom of Saudi Arabia: a systematic review.

J Pharm Policy Pract

January 2025

Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.

Background: Cancer cases in the Kingdom of Saudi Arabia (KSA) have tripled in recent years. Quality of Life (QoL) measurements are crucial for healthcare professionals because they reveal important information about how patients respond to drugs and their general health. This study aimed to collect and summarise articles exploring the QoL of patients undergoing oncology treatments in KSA.

View Article and Find Full Text PDF

Cell-membrane targeting sonodynamic therapy combination with FSP1 inhibition for ferroptosis-boosted immunotherapy.

Mater Today Bio

February 2025

Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.

Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!