Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2052.2005.01338.xDOI Listing

Publication Analysis

Top Keywords

fine mapping
4
mapping bovine
4
bovine chromosome
4
chromosome 22q24
4
22q24 region
4
region harbours
4
harbours antimicrobial
4
antimicrobial genes
4
genes qtl
4
qtl somatic
4

Similar Publications

CTB6 Confers Cold Tolerance at the Booting Stage by Maintaining Tapetum Development in Rice.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

Rice is highly sensitive to cold stress, particularly at the booting stage, which significantly threatens rice production. In this study, we cloned a gene, CTB6, encoding a lipid transfer protein involved in cold tolerance at the booting stage in rice, based on our previous fine-mapped quantitative trait locus (QTL) qCTB10-2. CTB6 is mainly expressed in the tapetum and young microspores of the anther.

View Article and Find Full Text PDF

Cold stress during the seedling stage significantly threatens rice ( L.) production, specifically in temperate climates. This study aimed to identify quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage.

View Article and Find Full Text PDF

Mapping Dynamic Protein Clustering with AIEgen-Active Chemigenetic Probe.

Angew Chem Int Ed Engl

January 2025

East China University of Science and Technology, Insitute of Fine Chemicals, Meilong Road 130, Shanghai, China, 200237, Shanghai, CHINA.

Protein clustering/disassembling is a fundamental process in biomolecular condensates, playing crucial roles in cell fate decision and cellular homeostasis. However, the inherent features of protein clustering, especially for its reversible behavior and subtle microenvironment variation, present significant hurdles in probe chemistry for tracking protein clustering dynamics. Herein, we report a bilateral-tailored chemigenetic probe, in which an "amphiphilic" AIEgen QMSO3Cl is covalently conjugated to a protein tag that is genetically fused to protein-of-interest (POI).

View Article and Find Full Text PDF

Multi-omics analysis identified the GmUGT88A1 gene, which coordinately regulates soybean resistance to cyst nematode and isoflavone content.

Plant Biotechnol J

January 2025

Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.

Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production.

View Article and Find Full Text PDF

Deep learning-based free-water correction for single-shell diffusion MRI.

Magn Reson Imaging

January 2025

Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA. Electronic address:

Free-water elimination (FWE) modeling in diffusion magnetic resonance imaging (dMRI) is crucial for accurate estimation of diffusion properties by mitigating the partial volume effects caused by free water, particularly at the interface between white matter and cerebrospinal fluid. The presence of free water partial volume effects leads to biases in estimating diffusion properties. Additionally, the existing mathematical FWE model is a two-compartment model, which can be well posed for multi-shell data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!