Growth inhibition and oxidized guanine lesion formation were studied in a number of base excision repair (BER) deficient Escherichia coli (E. coli) following chromate exposure. The only BER deficient bacterial strain that demonstrated significant growth inhibition by chromate, in comparison to its matched wild-type cell line, was the Nei deficient (TK3D11). HPLC coupled with electrospray ionization mass spectrometry showed that the Nei deficient E. coli accumulated the further oxidized guanine lesion, spiroiminodihydantoin (Sp), in genomic DNA at levels that were approximately 20-fold greater than its wild-type counterpart. However, no accumulation of the putative intermediate of Sp, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG), was observed in the Nei deficient strain. A MutM-/MutY- double deletion mutant that was deficient in BER enzymes for the recognition and repair of 8-oxodG demonstrated no sensitivity toward chromate nor was there an associated increase in Sp accumulation over that of its wild type. However, the MutM-/MutY- double deletion mutant did show approximately 20-fold accumulation of 8-oxodG upon chromate exposure over that of the wild type and the Nei deficient E. coli. These data demonstrate that the Nei BER enzyme is critical for the recognition and repair of the Sp lesion in bacterial cell lines and demonstrates the protective effect of a specific BER enzyme on DNA lesions formed by chromate. To our knowledge, these are the first studies to show the formation and biological significance of the Sp lesion in a cellular system. This study has significant mechanistic and toxicological implications for how chromate may serve as an initiator of carcinogenesis and suggests a role for specific repair enzymes that may ameliorate the carcinogenic potential of chromate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1317266 | PMC |
http://dx.doi.org/10.1021/tx0501379 | DOI Listing |
Zhonghua Nei Ke Za Zhi
February 2025
Department of Endocrinology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou450003, China.
Cells
January 2025
Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
Dominant optic atrophy (DOA) is the most commonly inherited optic neuropathy. The majority of DOA is caused by mutations in the gene, which encodes a dynamin-related GTPase located to the mitochondrion. OPA1 has been shown to regulate mitochondrial dynamics and promote fusion.
View Article and Find Full Text PDFbioRxiv
December 2024
Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461.
Crystallin proteins serve as both essential structural and as well as protective components of the ocular lens and are required for the transparency and light refraction properties of the organ. The mouse lens crystallin proteome is represented by αA-, αB-, βA1-, βA2-, βA3-, βA4-, βB1-, βB2-, βB3-, γA-, γB-, γC-, γD-, γE, γF-, γN-, and γS-crystallin proteins encoded by 16 genes. Their mutations are responsible for lens opacification and early onset cataract formation.
View Article and Find Full Text PDFZhonghua Nei Ke Za Zhi
January 2025
Department of Endocrinology, the First Medical Center of Chinese PLA General Hospital, Beijing100039, China.
J Cell Sci
January 2025
Department of Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA.
The Rab11-Rabin8-Rab8 ciliogenesis complex regulates the expansion of cilia-derived light-sensing organelles, the rod outer segments, via post-Golgi rhodopsin transport carriers (RTCs). Rabin8 (also known as RAB3IP), an effector of Rab11 proteins and a nucleotide exchange factor (GEF) for Rab8 proteins, is phosphorylated at S272 by NDR2 kinase (also known as STK38L), the canine early retinal degeneration (erd) gene product linked to the human ciliopathy Leber congenital amaurosis (LCA). Here, we define the step at which NDR2 phosphorylates Rabin8 and regulates Rab11-to-Rab8 succession in Xenopus laevis transgenic rod photoreceptors expressing human GFP-Rabin8 and its mutants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!