Dietary and genetic probes of atherogenic dyslipidemia.

Arterioscler Thromb Vasc Biol

Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.

Published: November 2005

A goal of dietary management of cardiovascular disease risk in patients with obesity and metabolic syndrome is improvement in the atherogenic dyslipidemia comprising elevated triglyceride, reduced high-density lipoprotein (HDL) cholesterol, and increased numbers of small, dense low-density lipoprotein (LDL) particles. Individuals with a genetically influenced trait characterized by a high proportion of small, dense LDL (phenotype B) respond to a low-fat, high-carbohydrate diet with greater reduction of LDL cholesterol, apoprotein B, and mid-sized LDL2 particles than unaffected subjects (phenotype A). In contrast, in phenotype A subjects there is a reciprocal shift from large LDL1 to small LDL3 such that a high proportion convert to phenotype B. There is evidence for heritable effects on these diet-induced subclass changes and for the involvement of specific genes. For example, a haplotype of the APOA5 gene associated with increased plasma triglyceride and small, dense LDL predicts greater diet-induced reduction of LDL2, a haplotype-specific effect that is strongly correlated with both increased VLDL precursors and LDL4 products. Understanding of such diet-genotype interactions may help to elucidate mechanisms that are responsible for phenotype B and for its differential dietary responsiveness. This information may also ultimately help in identifying those individuals who are most likely to achieve cardiovascular risk benefit from specific dietary interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.ATV.0000186365.73973.f0DOI Listing

Publication Analysis

Top Keywords

small dense
12
atherogenic dyslipidemia
8
high proportion
8
dense ldl
8
phenotype
5
dietary
4
dietary genetic
4
genetic probes
4
probes atherogenic
4
dyslipidemia goal
4

Similar Publications

Modulation of Protein-Protein Interactions with Molecular Glues in a Synthetic Condensate Platform.

J Am Chem Soc

January 2025

Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

Misregulation of protein-protein interactions (PPIs) underlies many diseases; hence, molecules that stabilize PPIs, known as molecular glues, are promising drug candidates. Identification of novel molecular glues is highly challenging among others because classical biochemical assays in dilute aqueous conditions have limitations for evaluating weak PPIs and their stabilization by molecular glues. This hampers the systematic discovery and evaluation of molecular glues.

View Article and Find Full Text PDF

Fig (Ficus carica L.) holds economic significance in Atushi, Xinjiang, but as fig cultivation expands, disease prevalence has risen. In July 2024, approximately 22% of harvested fig (cv.

View Article and Find Full Text PDF

Retinal Vasculitis as a Rare Presentation of Microscopic Polyangiitis.

Cureus

December 2024

Internal Medicine, Unidade Local de Saúde de Coimbra, Coimbra, PRT.

Microscopic polyangiitis (MPA) is a rare, autoimmune, small-vessel vasculitis usually described with the presence of perinuclear antineutrophil cytoplasmic antibodies (p-ANCA). It encompasses a broad spectrum of clinical features, including fatigue, weight loss, fever, arthralgia, skin lesions, and involvement of the lungs or kidneys. Ocular manifestations, however, are extremely rare.

View Article and Find Full Text PDF

Quantum dots (QDs) are promising materials for optoelectronic applications, but their widespread adoption requires controllable, selective, and scalable deposition methods. While traditional methods like spin coating and drop casting are suitable for small-scale deposition onto flat substrates, and ink-jet printing offers precision for small areas, these methods struggle with conformal deposition onto non-planar, large area substrates or selective deposition onto large area chips. Electrophoretic deposition (EPD) is an efficient and versatile technique capable of achieving conformal and selective area deposition over large areas, but its application to QD films has been limited.

View Article and Find Full Text PDF

The myeloid-specific triggering receptors expressed on myeloid cells 2 (TREM2) is a group of class I receptors expressed in brain microglia plays a decisive role in neurodegenerative diseases such as Alzheimer's disease (AD) and Nasu Hakola disease (NHD). The extracellular domain (ECD) of TREM2 interacts with a wide-range of ligands, yet the molecular mechanism underlying recognition of such ligands to this class I receptor remains underexplored. Herein, we undertook a systematic investigation for exploring the mode of ligand recognition in immunoglobulin-like ectodomain by employing both knowledge-based and machine-learning guided molecular docking approach followed by the state-of-the-art all atoms molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!