The impact cratering process on a comet is controversial but holds the key for interpreting observations of the Deep Impact collision with comet 9P/Tempel 1. Mid-infrared data from the Cooled Mid-Infrared Camera and Spectrometer (COMICS) of the Subaru Telescope indicate that the large-scale dust plume ejected by the impact contained a large mass (approximately 10(6) kilograms) of dust and formed two wings approximately +/-45 degrees from the symmetric center, both consistent with gravity as the primary control on the impact and its immediate aftermath. The dust distribution in the inner part of the plume, however, is inconsistent with a pure gravity control and implies that evaporation and expansion of volatiles accelerated dust.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1119091DOI Listing

Publication Analysis

Top Keywords

subaru telescope
8
observations deep
8
deep impact
8
impact
5
telescope observations
4
impact impact
4
impact cratering
4
cratering process
4
process comet
4
comet controversial
4

Similar Publications

Sun-like stars produce superflares roughly once per century.

Science

December 2024

Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany.

Stellar superflares are energetic outbursts of electromagnetic radiation that are similar to solar flares but release more energy, up to 10 erg on main-sequence stars. It is unknown whether the Sun can generate superflares and, if so, how often they might occur. We used photometry from the Kepler space observatory to investigate superflares on other stars with Sun-like fundamental parameters.

View Article and Find Full Text PDF

The canonical theory for planet formation in circumstellar disks proposes that planets are grown from initially much smaller seeds. The long-considered alternative theory proposes that giant protoplanets can be formed directly from collapsing fragments of vast spiral arms induced by gravitational instability-if the disk is gravitationally unstable. For this to be possible, the disk must be massive compared with the central star: a disk-to-star mass ratio of 1:10 is widely held as the rough threshold for triggering gravitational instability, inciting substantial non-Keplerian dynamics and generating prominent spiral arms.

View Article and Find Full Text PDF

Observing cosmic-ray extensive air showers with a silicon imaging detector.

Sci Rep

October 2023

Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI, 96720, USA.

Extensive air showers induced from high-energy cosmic rays provide a window into understanding the most energetic phenomena in the universe. We present a new method for observing these showers using the silicon imaging detector Subaru Hyper Suprime-Cam (HSC). This method has the advantage of being able to measure individual secondary particles.

View Article and Find Full Text PDF

The detection of starlight from the host galaxies of quasars during the reionization epoch (z > 6) has been elusive, even with deep Hubble Space Telescope observations. The current highest redshift quasar host detected, at z = 4.5, required the magnifying effect of a foreground lensing galaxy.

View Article and Find Full Text PDF

Direct imaging of gas giant exoplanets provides information on their atmospheres and the architectures of planetary systems. However, few planets have been detected in blind surveys with direct imaging. Using astrometry from the Gaia and Hipparcos spacecraft, we identified dynamical evidence for a gas giant planet around the nearby star HIP 99770.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!