Recent studies indicate that the induction of apoptosis in human colon cancer cells by certain nonsteroidal antiinflammatory drugs involves increased expression of 15-LOX-1 and synthesis of its major product 13-S-hydroxyoctadecadienoic acid (13-S-HODE). Evidence was obtained that this occurs via a cyclooxygenase-2 (COX-2)-independent mechanism, but the actual mechanism of induction of 15-LOX-1 by these compounds is not known. There is extensive evidence that treatment of SW480 human colon cancer cells with sulindac sulfone (Exisulind, Aptosyn) or the related derivative OSI-461, both of which inhibit cyclic GMP (cGMP)-phosphodiesterases but lack COX-2 inhibitory activity, causes an increase in intracellular levels of cGMP, thus activating protein kinase G (PKG), which then activates pathways that lead to apoptosis. Therefore, in the present study, we examined the effects of various agents that cause increased cellular levels of cGMP on the expression of 15-LOX-1 in SW480 human colon cancer cells. Treatment of the cells with Exisulind, sulindac sulfide, OSI-461, the guanylyl cyclase activator YC-1, or the cell-permeable cGMP compound 8-para-chlorophenylthio-cGMP (8-pCPT-cGMP) caused an increase in cellular levels of 15-LOX-1. Exisulind, OSI-461, and 8-pCPT-cGMP also increased mRNA levels of 15-LOX-1, suggesting that the effects were at the level of transcription. The cGMP-phosphodiesterase inhibitors and YC-1 increased the production of 13-S-HODE, which is the linoleic acid metabolite of 15-LOX-1. Treatment of SW480 cells with the PKG inhibitor Rp-8-pCPT-cGMP blocked Exisulind-induced 15-LOX-1 expression. Furthermore, derivatives of SW480 cells that were engineered to stably overexpress wild-type PKG Ibeta displayed increased cellular levels of 15-LOX-1 when compared with vector control cells. Taken together, these results provide evidence that the cGMP/PKG pathway can play an important role in the induction of 15-LOX-1 expression by nonsteroidal antiinflammatory drugs and related agents.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-1109DOI Listing

Publication Analysis

Top Keywords

human colon
16
colon cancer
16
cancer cells
16
cellular levels
12
levels 15-lox-1
12
15-lox-1
9
protein kinase
8
cells
8
nonsteroidal antiinflammatory
8
antiinflammatory drugs
8

Similar Publications

Background/aim: Immune checkpoint blockade has achieved great success as a targeted immunotherapy for solid cancers. However, small molecules that inhibit programmed death 1/programmed death ligand 1 (PD-1/PD-L1) binding are still being developed and have several advantages, such as high bioavailability. Previously, we reported a novel PD-1/PD-L1-inhibiting small compound, SCL-1, which showed potent antitumor effects on PD-L1 tumors.

View Article and Find Full Text PDF

Patients affected by metastatic carcinoma of the colon/rectum (mCRC) harboring mutations in the BRAF gene (MBRAF) respond poorly to conventional therapy and have a prognosis worse than that of patients without mutations. Despite the promising outcomes of targeted therapy utilizing multi-targeted inhibition of the mitogen-activated protein kinase (MAPK) signaling system, the therapeutic efficacy, especially for the microsatellite stable/DNA proficient mismatch repair (MSS/PMMR) subtype, remains inadequate. Patients with MBRAF/mCRC and high microsatellite instability or DNA deficient mismatch repair (MSI-H/DMMR) exhibit a substantial tumor mutation burden, suggesting a high probability of response to immunotherapy.

View Article and Find Full Text PDF

Background/aim: Colorectal cancer (CRC) has the third-highest incidence among human cancers. Advancements in chemotherapy and targeted therapy have improved the treatment outcomes for patients with CRC. However, the management of patients with unresectable metastatic CRC (mCRC) continues to be a significant challenge for clinicians worldwide, particularly for those with microsatellite stability (MSS) and the BRAF V600E mutation, as they are associated with the poorest prognosis.

View Article and Find Full Text PDF

Background/aim: Methionine addiction, known as the Hoffman effect, makes cancer cells more sensitive to methionine restriction than normal cells. However, the long-term effects of methionine restriction on cancer and normal cells have not been thoroughly studied.

Materials And Methods: HCT-116 human colorectal-cancer cells and Hs27 normal skin fibroblasts were treated with 0-8 U/ml of recombinant methioninase (rMETase) for 12 days.

View Article and Find Full Text PDF

This study evaluates the association between immunization program (IP) activities aimed at increasing HPV vaccination among adolescents and their impact on initiation rates. Our data sources are: (i) 2016 AIM Annual Survey and (ii) 2019 National Immunization Survey-Teen. We estimated the prevalence of HPV vaccine initiation using a multilevel Poisson model, combining state-level IP data and individual characteristics of adolescents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!