Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Orientia tsutsugamushi, an intracellular parasitic bacterium, comprises numerous strains of differing virulence. When BALB/c mice were infected intraperitoneally with this pathogen, a virulent strain known as Karp was found to multiply in the intraperitoneal macrophages and kill the mouse. In contrast, an avirulent strain, Kuroki, was shown to invade macrophages but be eliminated from the cells, allowing mouse survival. O. tsutsugamushi invades its host cell cytoplasm through phagocytosis and disruption of phagosomal membranes but some bacteria are then killed by phago-lysosomes within 1h of infection. Microscopic observations could not differentiate the Karp and Kuroki strains during entry and subsequent cell killing by phago-lysosomes. However, the Kuroki cells failed to divide and were markedly deformed following cytoplasmic invasion at several days post-infection. These findings suggest that macrophages have a mechanism to eliminate O. tsutsugamushi in the cytoplasm, if the invading bacteria escape phagosomal clearance, and that it is this mechanism that Kuroki does not survive. Additionally, significant levels of nitric oxide (NO) are produced in macrophages by Kuroki, but not by Karp. An NO synthase inhibitor, however, does not increase the growth of Kuroki, suggesting that NO is induced in a strain-dependent manner but does not effect proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2005.08.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!