Ultrasound and sodium lauryl sulfate (SLS) exhibit a synergistic effect on transdermal transport, when applied simultaneously on the skin. The synergistic mechanism is not fully understood. Previous studies have shown that application of ultrasound simultaneously with SLS, results in enhanced mass transfer and improved penetration and dispersion of the surfactant. In this study we demonstrate that simultaneous application of ultrasound and SLS leads to modification of the pH profile of the stratum corneum. This pH modification within the stratum corneum's microenvironment, can affect both the structure of the lipid layers and the activity of SLS as a chemical enhancer due to its improved lipophilic solubility. The altered pH profile that results in improved SLS lipophilic solubility, together with improved SLS penetration and dispersion, can explain the synergistic enhancing effect of ultrasound and SLS on transdermal transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2005.06.011 | DOI Listing |
AAPS PharmSciTech
January 2025
Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India.
Transdermal drug delivery (TDD) represents a transformative paradigm in drug administration, offering advantages such as controlled drug release, enhanced patient adherence, and circumvention of hepatic first-pass metabolism. Despite these benefits, the inherent barrier function of the skin, primarily attributed to the stratum corneum, remains a significant impediment to the efficient permeation of therapeutic agents. Recent advancements have focused on macromolecular-assisted permeation enhancers, including carbohydrates, lipids, amino acids, nucleic acids, and cell-penetrating peptides, which modulate skin permeability by transiently altering its structural integrity.
View Article and Find Full Text PDFSince its introduction, vaccination has heavily improved health outcomes. However, implementing vaccination efforts can be challenging, particularly in low and middle-income countries with warmer climates. Microneedle technology has been developed for its simple and relatively painless applications of vaccines.
View Article and Find Full Text PDFPharm Nanotechnol
December 2024
Department of Pharmaceutics, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur,Chennai-600116, India
Am J Psychiatry
January 2025
Directorate of Behavioral Health, Walter Reed National Military Medical Center, Bethesda, MD (Wolfgang); Departments of Psychiatry (Wolfgang) and Medical and Clinical Psychology (Gray), Uniformed Services University, Bethesda, MD; Departments of Psychiatry (Wolfgang, Krystal), Neuroscience (Krystal), and Psychology (Krystal), Yale University School of Medicine, New Haven, CT; Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School (Fonzo, Nemeroff); Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, UCLA (Grzenda); Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (Rodriguez).
Georgian Med News
October 2024
Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia.
Introduction: The annual growth of psychiatric and neurodegenerative diseases requires new therapeutic strategies for delivering active pharmaceutical molecules to the brain. Non-invasive intranasal drug delivery is a promising method that allows bypassing of the blood-brain barrier and the liver de-toxification system.
Results: The review discusses the main results of experimental studies of the effect of intranasal substances of amino acid and peptide nature on the monoamine systems of the brain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!