Insufficient understanding of the interactions of reactive phases (e.g., Fe and Al oxides) with minerals, other reactive phases and sorbing species has made predicting and modeling metal sorption on natural sediment surfaces difficult. This work develops a method to create mixed Fe/Al planar oxide surfaces by coating well-characterized planar gamma-Al2O3 with ferric iron. The objective is to closely control the Fe/Al ratio as well as the distribution of Fe on the planar surface. Effects of starting Fe(III) concentration, reaction time and number of coating sequences were examined using XPS and ToF-SIMS. No observable trend was seen in Fe/Al ratios by varying the starting Fe(III) concentration or reaction time. For both 4- and 14-day reactions, lower concentrations of Fe(III) produced oxide phases with a homogeneous distribution of Fe at the surface as detected by ToF-SIMS. ToF-SIMS Fe elemental maps of the oxide phases resulting from the highest Fe(III) concentration showed areas of localized Fe deposition. A sequential coating procedure allowed for a closer control of the concentration and spatial distribution of Fe(III) in the resulting oxide phase. This work provides methodology that can be used to create Fe/Al oxide phases whose Fe/Al content can be controlled for use in subsequent sorption studies to better understand the effects of mixed phase oxides on metal ion uptake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2005.08.032 | DOI Listing |
Small
December 2024
Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
To enhance tumor comprehensive therapeutic effect of nanomedicines, an efficient strategy that integrates polydopamine and IR780 photothermal therapy, glucose oxidase (GOx) starvation therapy, Banoxantrone (AQ4N) and Tirapazamine (TPZ) dual hypoxia chemotherapy is developed in chronological order. Higher tumor accumulation of porous dual infinite coordination polymer nanocomposites are designed and prepared to implement this strategy, in which fluorescent dye IR780 doped hypoxic prodrugs AQ4N and TPZ coordinated with Cu(II) as the core, this core is encapsulated by GOx-loaded porous polydopamine coordinated with Fe(III) (Fe-MPDA). These nanocomposites exhibit a particle dimension of 118.
View Article and Find Full Text PDFWater Res X
May 2025
Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia.
Anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox) is an essential process in the geochemical iron and nitrogen cycling. This study explores Feammox-based nitrogen removal in a continuous laboratory up-flow bioreactor stimulated by intermittently adding 5 mM Fe(OH) at intervals of approximately two months. The feed was synthetic wastewater with a relatively low ammonium concentration (∼100 mg N/L), yet without organic carbon in order to test its autotrophic nitrogen removal performance.
View Article and Find Full Text PDFChemistry
December 2024
Universidad Complutense de Madrid, Organic Chemistry, SPAIN.
The synthesis and characterization of novel compounds (5-8) as mimetics of [FeFe]-hydrogenase, combining two distinct systems capable of participating in hydrogen evolution reactions (HER): the [(μ-adt)Fe2(CO)6] fragment and M-salen complexes (salen = N,N'-bis(salicylidene)ethylenediamine) (M = Zn, Ni, Fe, Mn), is reported. These complexes were synthesized in high yields via a three-step procedure from N,N'-bis(4-R-salicylidene)ethanediamine) 4 [R = Fe2(CO)6(μ-SCH2)2COCH2O)]. Structural analysis through spectroscopic, spectrometric, and computational (DFT) methods confirmed distorted tetrahedral and square-planar geometries for Zn-salen and Ni-salen complexes (5 and 6) respectively, while complexes Fe-salen 7 and Mn-salen 8 exhibit square-based pyramidal structures typical of Fe(III) and Mn(III) high-spin salen-complexes.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan. Electronic address:
The reduction of Cr(VI) to Cr(III) is key to lowering environmental toxicity and mobility, but the reverse process remains less understood. We investigated Cr(III) oxidation mechanisms across various pH levels and light wavelengths (185, 254, and 358 nm) in the presence of Fe(III). At pH 3.
View Article and Find Full Text PDFJ Med Chem
December 2024
Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
Cancer remains one of the deadliest diseases worldwide, with some tumors proving difficult to treat and increasingly resistant to current therapies. Capitalizing on this, there is a need for new therapeutic agents with novel mechanisms of action. Among promising candidates, Fe(III) complexes have gained significant attention as potential chemotherapeutic agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!