Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism.

Prog Nucleic Acid Res Mol Biol

Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.

Published: January 2006

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0079-6603(05)80006-6DOI Listing

Publication Analysis

Top Keywords

nucleic acid
4
acid chaperone
4
chaperone activity
4
activity hiv-1
4
hiv-1 nucleocapsid
4
nucleocapsid protein
4
protein critical
4
critical role
4
role reverse
4
reverse transcription
4

Similar Publications

A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.

View Article and Find Full Text PDF

Study of the interaction between alkaline phosphatase and biomacromolecule substrates.

Anal Bioanal Chem

January 2025

Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.

Alkaline phosphatase (ALP) is a nonspecific phosphatase, and its interaction with substrates mainly depends on the recognition of phosphate groups on the substrate. Previous enzymatic research has focused mainly on the enzymatic reaction kinetics of the inorganic small molecule p-nitrophenol phosphate (pNPP) as a substrate, but its interaction with biomacromolecule substrates has not been reported. In current scientific research, ALP is often used for molecular cloning, such as removing the 5' termini of nucleic acids.

View Article and Find Full Text PDF

Prevalence and molecular characterisation of Balantioides coli in pigs raised in Italy.

Parasitol Res

January 2025

Department of Veterinary Medicine and Animal Sciences, Università Degli Studi Di Milano, Via Dell'Università, 6, 26900, Lodi, Italy.

Balantioides coli is the only ciliated protist of both human and veterinary interest and colonises the large intestine of several hosts, including humans and pigs. Given the scarcity of data on B. coli circulation in pigs in Italy, a study was planned to record its prevalence and genetic types and compare the analytical sensitivity of two copromicroscopic techniques.

View Article and Find Full Text PDF

Structural insights into RNA cleavage by PIWI Argonaute.

Nature

January 2025

Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.

Argonaute proteins are categorized into AGO and PIWI clades. Across most animal species, AGO-clade proteins are widely expressed in various cell types, and regulate normal gene expression. By contrast, PIWI-clade proteins predominantly function during gametogenesis to suppress transposons and ensure fertility.

View Article and Find Full Text PDF

Bioinformatic analysis of ferroptosis related biomarkers and potential therapeutic targets in vitiligo.

Sci Rep

January 2025

Department of Dermatology, Suining Central Hospital, No. 127, Western Desheng Road, Suining, 629000, People's Republic of China.

Vitiligo is a complex autoimmune skin disorder characterized by depigmentation and immune dysregulation. To elucidate the role of ferroptosis-related genes (FRGs) in vitiligo, we conducted a comprehensive analysis of gene expression data from the GSE53146 and GSE65127 datasets obtained from the GEO database. We identified 31 differentially expressed FRGs (DE-FRGs), with 21 genes upregulated and 10 downregulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!