We have recently proposed total hydroxyoctadecadienoic acid (HODE) as a biomarker for oxidative stress in vivo. The biological samples such as plasma, urine, and tissues were first reduced and then saponified to convert the oxidation products of linoleate to HODE. In the present study, this method was applied to measure the oxidative damage induced by the administration of carbon tetrachloride to mice and also to evaluate the capacity of antioxidant to inhibit the above damage. alpha-Tocopherol transfer protein knock out (alpha-TTP-/-) mice were used to evaluate antioxidant effect in the absence of alpha-tocopherol. The intraperitoneal administration of carbon tetrachloride to mice induced the increase in HODE in liver and plasma, which was followed by an increase in plasma glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). F2-isoprostanes, another prevailing biomarker, were also increased similarly, but their concentration was approximately two to three orders of magnitude smaller than that of HODE. The lipophilic antioxidants such as gamma-tocopherol, gamma-tocotrienol and 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran (BO-653) were effective in suppressing the formation of HODE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2005.01.015 | DOI Listing |
J Chem Phys
January 2025
Department of Materials Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
The liquid/liquid interfaces of room-temperature ionic liquids (RTILs) play a pivotal role in chemical reactions owing to their characteristic microscopic structure, yet the structure of hydrophobic liquid/RTIL interfaces remains unclear. We studied the structure at the liquid/liquid interfaces of carbon tetrachloride (CCl4) and 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim][TFSA]; n = 4 and 8) RTILs using infrared-visible sum frequency generation (SFG) vibrational spectroscopy. A comparison of the SFG spectra of the CCl4/RTIL and air/RTIL interfaces revealed that the solvation of the alkyl chains of the [Cnmim]+ cations by CCl4 reduces the number of gauche defects in the alkyl chain and the interface number density of the cation at the CCl4 interface.
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of General Surgery, Tangdu Hospital of the Air Force Medical University, 569 Xin Si Road, Xi'an, 710038, Shaanxi, China.
Liver cirrhosis is prognostically associated with poor life expectancy owing to subsequent liver failure. Thus, understanding liver regeneration processes during cirrhotic injury is highly important. This study explored the role of macrophage heterogeneity in liver regeneration following splenectomy.
View Article and Find Full Text PDFFood Chem Toxicol
December 2024
Department of Pharmacology, Central University Punjab, Bathinda Punjab, India. Electronic address:
Methyl donors regulate the one-carbon metabolism and have significant potential to reduce oxidative stress and inflammation. Therefore, this study aims to investigate the protective effect of methyl donors against CCl-induced liver fibrosis. Liver fibrosis was induced in male Sprague Dawley rats using CCl at a dose of 1ml/kg (twice a week for a 4-week, via intraperitoneal route).
View Article and Find Full Text PDFGenomics
December 2024
College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin City, Jilin Province, 132013, China. Electronic address:
This study investigated the preventive and protective effects of Portulaca oleracea polysaccharides (PP) on Acute liver injury (ALI) in mice and its regulatory effects on intestinal microorganisms, and explored the underlying protective mechanisms. Initially, PP was administered, and then CCl4 was used to induce the mouse ALI model. Serum and liver markers were measured by ELISA.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
Highly toxic halo-/nitro-substituted organics, often in low concentrations and with high hydrophobicity, make it difficult to obtain electrons for reduction when strongly electron-competing substances (e.g., O, H/HO, NO) coexist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!