Chromosomal DNA transfer in Mycobacterium smegmatis is mechanistically different from classical Hfr chromosomal DNA transfer.

Mol Microbiol

Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA.

Published: October 2005

AI Article Synopsis

Article Abstract

Classical conjugal DNA transfer of chromosomal DNA in bacteria requires the presence of a cis-acting site, oriT, in the chromosome. Acquisition of an oriT occurs if a conjugative plasmid integrates into the chromosome to form an Hfr donor strain, which can transfer extensive regions of chromosomal DNA. Because oriT sequences are unique, and because transfer occurs in a 5' to 3' direction, the frequency with which a particular gene is inherited by the recipient depends on the gene's location: those closest to the 3' side of oriT are transferred most efficiently. In addition, as the entire chromosome must be transferred to regenerate oriT, Hfr transconjugants never become donors. Here we describe novel aspects of a chromosomal DNA transfer system in Mycobacterium smegmatis. We demonstrate that there are multiple transfer initiations from a donor chromosome and, as a result, the inheritance of any gene is location-independent. Transfer is not contiguous; instead, multiple non-linked segments of DNA can be inherited in a recipient. However, we show that, with appropriate selection, segments of DNA at least 266 kb in length can be transferred. In further contrast to Hfr transfer, transconjugants can become donors, suggesting that the recipient chromosome contains multiple cis-acting sequences required for transfer, but lacks the trans-acting transfer functions. We exploit these observations to map a donor-determining locus in the M. smegmatis chromosome using genetic linkage analysis. Together, these studies further underline the unique nature of the M. smegmatis chromosomal transfer system.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2005.04824.xDOI Listing

Publication Analysis

Top Keywords

chromosomal dna
20
dna transfer
16
transfer
12
mycobacterium smegmatis
8
inherited recipient
8
transconjugants donors
8
transfer system
8
segments dna
8
dna
7
chromosomal
6

Similar Publications

Objective: Silicosis is a pneumoconiosis characterized by fibrosis of the lung parenchyma caused by the inhalation of silica particles. Silica dust inhalation is associated with inflammation and induction of oxidative stress in the lungs. This oxidative stress affects telomeres, which are short tandem DNA repeats that cap the end of linear chromosomes.

View Article and Find Full Text PDF

Molecular markers and cytogenetics of Eleven O'Clock Portulaca umbraticola: a non-conventional edible ornamental crop.

Braz J Biol

January 2025

Universidade Federal da Paraíba - UFPB, Centro de Ciências Agrárias - CCA, Areia, PB, Brasil.

Portulaca umbraticola, commonly known as "Eleven o'clock", is a popular ornamental plant in Brazil, but its potential as a non-conventional food source remains underexplored. Assessing its genetic and cytogenetic diversity is crucial for breeding and selecting optimal accessions. In this study, we analyzed the genetic diversity of P.

View Article and Find Full Text PDF

Noncoding satellite DNA repeats are abundant at the pericentromeric heterochromatin of eukaryotic chromosomes. During interphase, sequence-specific DNA-binding proteins cluster these repeats from multiple chromosomes into nuclear foci known as chromocenters. Despite the pivotal role of chromocenters in cellular processes like genome encapsulation and gene repression, the associated proteins remain incompletely characterized.

View Article and Find Full Text PDF

Dual modes of DNA N-methyladenine maintenance by distinct methyltransferase complexes.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.

Stable inheritance of DNA N-methyladenine (6mA) is crucial for its biological functions in eukaryotes. Here, we identify two distinct methyltransferase (MTase) complexes, both sharing the catalytic subunit AMT1, but featuring AMT6 and AMT7 as their unique components, respectively. While the two complexes are jointly responsible for 6mA maintenance methylation, they exhibit distinct enzymology, DNA/chromatin affinity, genomic distribution, and knockout phenotypes.

View Article and Find Full Text PDF

Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!