A hierarchical family of five three-dimensional potential energy surfaces has been developed for the benchmark He-CO system. Four surfaces were obtained at the coupled cluster singles and doubles level of theory with a perturbational estimate of triple excitations, CCSD(T), and range in quality from the doubly augmented double-zeta basis set to the complete basis set (CBS) limit. The fifth corresponds to an approximate CCSDT/CBS surface (CCSD with iterative triples/CBS, denoted CBS+corr). The CBS limit results were obtained by pointwise basis set extrapolations of the individual counterpoise-corrected interaction energies. For each surface, over 1000 interaction energies were accurately interpolated using a reproducing kernel Hilbert space approach with an R-6+R-7 asymptotic form. In each case, both three-dimensional and effective two-dimensional surfaces were developed. In standard Jacobi coordinates, the final CBS+corr surface has a global minimum at rCO=2.1322a0,R=6.418a0, and gamma=70.84 degrees with a well depth of -22.34 cm-1. The other four surfaces have well depths ranging from -14.83 cm-1 [CCSD(T)/d-aug-cc-pVDZ] to -22.02 cm-1 [CCSD(T)/CBS]. For each of these surfaces the infrared spectrum has been accurately calculated and compared to experiment, as well as to previous theoretical and empirical surfaces. The final CBS+corr surface exhibits root-mean-square and maximum errors compared to experiment (4He) of just 0.03 and 0.04 cm-1, respectively, for all 42 transitions and is the most accurate ab initio surface to date for this system. Other quantities investigated include the interaction second virial coefficient, the integral cross sections, and thermal rate coefficients for rotational relaxation of CO by He, and rate coefficients for CO vibrational relaxation by He. All the observable quantities showed a smooth convergence with respect to the quality of the underlying interaction surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1947194 | DOI Listing |
Adv Mater
January 2025
Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149, Münster, Germany.
As a phase change material (PCM), antimony exhibits a set of desirable properties that make it an interesting candidate for photonic memory applications. These include a large optical contrast between crystalline and amorphous solid states over a wide wavelength range. Switching between the states is possible on nanosecond timescales by applying short heating pulses.
View Article and Find Full Text PDFKnee Surg Relat Res
January 2025
Bioengineering Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
Background: Unplanned readmission, a measure of surgical quality, occurs after 4.8% of primary total knee arthroplasties (TKA). Although the prediction of individualized readmission risk may inform appropriate preoperative interventions, current predictive models, such as the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) surgical risk calculator (SRC), have limited utility.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to rapidly identify the chemical components in Dracocephalum moldavica, and UPLC was employed to determine the content of its main components. MS analysis was performed using an electrospray ionization(ESI) source and data were collected in the negative ion mode. By comparing the retention time and mass spectra of reference compounds, and using a self-built compound database and the PubChem database, 68 compounds were identified from D.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. Electronic address:
Recent studies have indicated that the GIMAP family is downregulated in lung cancer and correlates with poor prognosis, although the underlying mechanisms remain unclear. This study aimed to elucidate the mechanism behind GIMAP1 downregulation in lung cancer. Bioinformatics tools were employed to assess the correlation between the GIMAP family and various cancers.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India. Electronic address:
This study investigates the interaction of a synthetic bio-relevant molecule with C and BN nanorings, exploring their potential applications in sensing and drug delivery. Employing Density Functional Theory (DFT) at the ωB97XD level with the 6-31G(d,p) basis set, we computed the adsorption and electronic properties of the resulting nanocomplexes. A total of ten distinct configurations were identified for the interactions, with adsorption energies ranging from -6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!