AI Article Synopsis

  • Sphingosine-1-phosphate (S1P) is a lipid from activated platelets that regulates blood vessel constriction by activating Rho-associated kinases and nitric oxide synthase, but its effects in human placental arteries, especially during pregnancy, were previously unclear.
  • In experiments, S1P caused dose-dependent constriction of placental arteries and this effect was enhanced when nitric oxide production was inhibited, suggesting a complex interaction between S1P signaling and nitric oxide.
  • The study concluded that S1P promotes vasoconstriction in human placental arteries via increased Ca(2+)-sensitization through Rho-associated kinase activation, highlighting its potential role in regulating blood flow during pregnancy

Article Abstract

Sphingosine-1-phosphate (S1P), a bioactive lipid released from activated platelets, has been demonstrated in animal models to regulate vascular tone through receptor-mediated activation of Rho-associated kinase 1 and nitric oxide synthase 3. The role of S1P in regulation of human vascular tone (particularly during pregnancy, with its unique vascular adaptations and localized platelet activation) is unknown. We hypothesized that S1P would constrict small placental arteries through activation of Rho-associated kinases with modulation by nitric oxide. Reverse transcription-polymerase chain reaction of chorionic plate artery preparations detected mRNAs encoding all five receptors for S1P, and S1P induced dose-dependent vasoconstriction of both chorionic plate and stem villous isobarically mounted arteries, which at 10 micromol/L was 32.9% +/- 3.86% (mean +/- SEM) and 34.6% +/- 7.01%, respectively. In stem villous arteries, S1P-induced vasoconstriction was enhanced significantly following inhibition of nitric oxide synthases with N(G)-nitro-L-arginine methyl ester (100 micromol/L, 52.6% +/- 6.28%, P < 0.05). The S1P-induced vasoconstriction was reversed by Y27632, an inhibitor of Rho-associated kinases (10 micromol/L) in both chorionic plate (to 14.9% +/- 4.95%) and stem villous arteries (to 2.71% +/- 6.13%). The S1P added to alpha-toxin-permeabilized, isometrically mounted chorionic plate arteries bathed in submaximal Ca(2+)-activating solution induced Ca(2+)-sensitization of constriction, which was 47.7% +/- 10.0% of that occurring to maximal Ca(2+)-activating solution. This was reduced by Y27632 to 18.4% +/- 18.4%. Interestingly, S1P-induced vasoconstriction occurred in all isobarically mounted arteries but was inconsistent in isometrically mounted chorionic plate arteries. In summary, S1P-induced vasoconstriction in human placental arteries is mediated by increased Ca(2+)-sensitization through activation of Rho-associated kinases, and this vasoconstriction also is modulated by nitric oxide. Identification of these actions of S1P in the placental vasculature is important for understanding both normal and potentially abnormal vascular adaptations with pregnancy.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.105.043034DOI Listing

Publication Analysis

Top Keywords

nitric oxide
20
chorionic plate
20
s1p-induced vasoconstriction
16
vascular tone
12
activation rho-associated
12
rho-associated kinases
12
stem villous
12
rho-associated kinase
8
kinase nitric
8
human placental
8

Similar Publications

Objective: This study aimed to investigate and compare the histological response of rabbit dental pulp after direct pulp capping with 3 different materials: mineral trioxide aggregate (MTA), nanoparticles of fluorapatite (Nano-FA), and nanoparticles of hydroxyapatite (Nano-HA) after 4 and 6-week time intervals.

Material And Methods: A total of 72 upper and lower incisor teeth from 18 rabbits were randomly categorized into 3 groups)24 incisors from six rabbits each. MTA Group: teeth were capped with MTA.

View Article and Find Full Text PDF

Chitosan nanoencapsulation of Turbinaria triquetra metabolites in the management of podocyturia in nephrotoxic rats.

Sci Rep

January 2025

Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute , National Research Centre, Dokki, Cairo, 12622, Egypt.

Cisplatin is a chemotherapeutic drug, which exhibits undesirable side effects. Chitosan nanoparticles are promising for drug delivery. The aim of this study was to determine the effect of the brown alga Turbinaria triquetra ethyl acetate fraction and polysaccharides, either loaded on chitosan nanoparticles or free, against podocyturia and cisplatin nephrotoxicity in rats.

View Article and Find Full Text PDF

A preclinical study on effect of betanin on sodium fluoride induced hepatorenal toxicity in wistar rats.

J Complement Integr Med

January 2025

Department of Basic Medical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Background: Excessive fluoride exposure leads to increased oxidative stress and lipid peroxidation, causing harmful effects on the metabolic organs in the human body. Betanin, a pigment obtained from beetroot, is seen to have powerful anti-inflammatory and antioxidant. The study was conducted to determine the role of betanin in fluoride induced hepato-renal toxicity in Wistar rats.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

PCM Consulting, Pathways Connectivity Maps Inc., Mountain View, CA, USA.

Background: High-throughput assays have attracted significant attention in Alzheimer's Disease (AD) research, especially for enabling rapid diagnostics screening for factors at the molecular level contributing to the disease recurrence. With advances in laboratory automation, there is a growing need for quality pre-clinical data. Assays such as Microarrays, Proteomics, or AI are all dependent on high-quality input data that serve as a starting point.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!