Several transporters belonging to the ABCA subfamily of ABC (ATP-binding cassette) proteins are involved in lipid trafficking. Human ABCA5 and its rat orthologue, rAbca5, represent recently identified subfamily members whose substrate spectrum remains to be defined. The elucidation of (sub)cellular rAbca5 distribution would be expected to provide a basis for optimization of functional analyses. In the present study, we applied in situ hybridization to examine rAbca5 mRNA distribution within sections of rat testis, a tissue expressing high levels of rAbca5 mRNA. We found rAbca5 mRNA to be predominantly expressed in interstitial Leydig cells, which are major sites of testosterone synthesis. To investigate rAbca5 subcellular localization, we constructed expression vectors yielding rAbca5 fused either to EGFP (enhanced green fluorescent protein) or to a peptide bearing the viral V5 epitope. During rAbca5 cDNA cloning, we discovered a splice variant sequence (rAbca5 V20+16), predicted to give rise to a truncated, half-size transporter, which was highly homologous with a human splice variant described by us previously. Quantitative RT (reverse transcription)-PCR demonstrated that the rAbca5 splice variant was expressed in numerous tissues (including testis, brain and lungs), its cDNA amounting to 2.6-11.2% of total rAbca5 cDNA. Transfection of individual rAbca5-EGFP, rAbca5 splice variant-EGFP or transporter-V5 expression plasmids along with organelle marker plasmids into HEK-293 cells (human embryonic kidney 293 cells) revealed that both rAbca5 and splice variant fusion proteins co-localized with marker protein for the Golgi apparatus. Expression of rAbca5 mRNA in Leydig cells, intracellular localization of rAbca5-EGFP/rAbca5-V5 and involvement of rAbca5-related proteins in lipid transport suggest that rAbca5 may participate in intracellular sterol/steroid trafficking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1383666 | PMC |
http://dx.doi.org/10.1042/BJ20050808 | DOI Listing |
Plant Cell Environ
January 2025
College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China.
The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
Background: Inclusion Body Myositis is an acquired muscle disease. Its pathogenesis is unclear due to the co-existence of inflammation, muscle degeneration and mitochondrial dysfunction. We aimed to provide a more advanced understanding of the disease by combining multi-omics analysis with prior knowledge.
View Article and Find Full Text PDFSci Adv
January 2025
Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.
CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.
View Article and Find Full Text PDFKidney Int Rep
January 2025
Division of Pediatric Nephrology, Rosenheim Hospital, Germany.
Introduction: Newborn screening (NBS) programs for a defined set of eligible diseases have been enormously successful, but genomic NBS allowing for detection of additional treatable disorders has not been broadly implemented. All 3 types of primary hyperoxaluria (PH1-3) are rare autosomal recessive diseases caused by distinct defects of glyoxylate metabolism that are diagnosed genetically with certainty. Early diagnosis and treatment are mandatory to avoid renal failure or sequalae associated with persistent hyperoxaluria.
View Article and Find Full Text PDFNephrol Dial Transplant
January 2025
Department of Nephrology, Kidney Transplantation and Dialysis, CHU Lille, University of Lille, Lille, France.
Background And Hypothesis: Unlike X-linked or autosomal recessive Alport Syndrome, no clear genotype/phenotype correlation has yet been demonstrated in patients carrying a single variant of COL4A3 or COL4A4.
Methods: We carried out a multicenter retrospective study to assess the risk factors involved in renal survival in patients presenting a single pathogenic variant on COL4A3 or COL4A4.
Results: 97 patients presenting a single pathogenic variant of COL4A3 or COL4A4 were included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!