Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A large and increasing fraction of the planet's population lives in megacities, especially in the developing world. These large metropolitan areas generally have very high levels of both gaseous and particulate air pollutants that have severe impacts on human health, ecosystem viability, and climate on local, regional, and even continental scales. Emissions fluxes and ambient pollutant concentration distributions are generally poorly characterized for large urban areas even in developed nations. Much less is known about pollutant sources and concentration patterns in the faster growing megacities of the developing world. New methods of locating and measuring pollutant emission sources and tracking subsequent atmospheric chemical transformations and distributions are required. Measurement modes utilizing an innovative van based mobile laboratory equipped with a suite of fast response instruments to characterize the complex and "nastier" chemistry of the urban boundary layer are described. Instrumentation and measurement strategies are illustrated with examples from the Mexico City and Boston metropolitan areas. It is shown that fleet average exhaust emission ratios of formaldehyde (HCHO), acetaldehyde (CH3CHO) and benzene (C6H6) are substantial in Mexico City, with gasoline powered vehicles emitting higher levels normalized by fuel consumption. NH3 exhaust emissions from newer light duty vehicles in Mexico City exceed levels from similar traffic in Boston. A mobile conditional sampling air sample collection mode designed to collect samples from intercepted emission plumes for later analysis is also described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b500411j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!