A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo strain measurements from hardware and lamina during spine fusion. | LitMetric

In vivo strain measurements from hardware and lamina during spine fusion.

J Biomed Mater Res B Appl Biomater

Orthopaedic Research Lab, Department of Orthopaedic Surgery, University of Arizona, Tucson, Arizona 85724, USA.

Published: November 2005

Currently, spine fusion is determined using radiography and clinical evaluation. There are discrepancies between radiographic evidence and direct measurements of fusion, such as operative exploration and biomechanical or histological measurements. In order to facilitate the rapid return of patients to normal activities, a monitoring technique to accurately detect fusion in vivo and to prevent overload during the postoperative period would be useful. The objectives of this study were to develop an implantable monitoring system consisting of CPC-coated strain gauges and a radio transmitter to detect the onset of fusion and measure strain during postsurgical activities. A patient underwent anterior release and fusion, followed by posterior instrumentation and fusion with segmental spinal instrumentation. Four strain gauges were placed during surgery. One was attached to the left-side rod and one to each of the lamina at T9, T10, and T11. An externally powered implanted radio transmitter attached to the gauges was placed in a subcutaneous pouch. Strains were monitored weekly and tabulated during various activities for 7 months. Peak strains during twisting and bending were tabulated to detect the onset of fusion. Strains were also recorded during activities such as climbing off an examination table, rising from a chair, and climbing stairs. Strains collected from the left rod indicated that, immediately postoperatively, it was loaded at acceptable levels. The largest and most consistent strain changes measured from the lamina were recorded during twisting.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.30262DOI Listing

Publication Analysis

Top Keywords

fusion
8
spine fusion
8
strain gauges
8
radio transmitter
8
detect onset
8
onset fusion
8
vivo strain
4
strain measurements
4
measurements hardware
4
hardware lamina
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!