Anomalies in the ultrastructure of chloroplasts, from transgenic ipt tobacco, overproducing endogenous cytokinins (CKs) were studied. Detailed analyses of CKs and their metabolites showed that Pssu-ipt tobacco contained enhanced contents of CKs both in leaves and in isolated chloroplasts. The role of CKs in the formation of anomalous structures is suggested. Pssu-ipt chloroplasts frequently formed the distinct peripheral reticulum with a system of caverns that often involved mitochondria and/or peroxisomes. Large crystalloids, which were found in chloroplasts of Pssu-ipt, occupied up to 16% of chloroplast volume. We suggested that the crystalloids were formed by LHC II aggregates. This was supported by analysis of the fluorescence emission spectra at 77 degrees K, chlorophyll a/b ratio, immunogold staining of the structures, and crystallographic unit size analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-005-0119-6DOI Listing

Publication Analysis

Top Keywords

chloroplasts transgenic
8
transgenic ipt
8
ipt tobacco
8
chloroplasts
5
three-dimensional reconstruction
4
reconstruction anomalous
4
anomalous chloroplasts
4
tobacco anomalies
4
anomalies ultrastructure
4
ultrastructure chloroplasts
4

Similar Publications

Photosynthesis is essential for the accumulation of organic compounds in plant leaves. Study of photosynthesis in the leaves of Broussonetia papyrifera is crucial for enhancing its biomass production, growth, and development. Here, we cloned the SikPsaF gene associated with photosynthesis from Saussurea involucrata and constructed a vector that was introduced into B.

View Article and Find Full Text PDF

The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.

View Article and Find Full Text PDF

The green microalga Chlamydomonas reinhardtii is a promising host organism for the production of valuable compounds. Engineering the Chlamydomonas chloroplast genome offers several advantages over the nuclear genome, including targeted gene insertion, lack of silencing mechanisms, potentially higher protein production due to multiple genome copies and natural substrate abundance for metabolic engineering. Tuneable expression systems can be used to minimize competition between heterologous production and host cell viability.

View Article and Find Full Text PDF

Plastidial thioredoxin-like proteins are essential for normal embryogenesis and seed development in Arabidopsis thaliana.

J Plant Res

December 2024

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.

Thiol/disulfide-based redox regulation is a key mechanism for modulating protein functions in response to changes in cellular redox status. Two thioredoxin (Trx)-like proteins [atypical Cys His-rich Trx (ACHT) and Trx-like2 (TrxL2)] have been identified as crucial for oxidizing and deactivating several chloroplast enzymes during light-to-dark transitions; however, their roles remain to be fully understood. In this study, we investigated the functions of Trx-like proteins in seed development.

View Article and Find Full Text PDF

AcGLK1 promotes chloroplast division through regulating AcFtsZ1 in Actinidia chinensis.

Planta

December 2024

Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.

This study unravels a new regulatory member (AcGLK1) that regulates chloroplast division by affecting the expression levels of cytoskeletal filamenting temperature-sensitive Z (FtsZ) in Actinidia chinensis. GOLDEN 2-LIKE (GLK) transcription factor members of GARP subfamily play an irreplaceable role in regulating chloroplast biogenesis and development. Here we report the functional characterization of a novel GLK1 homolog (AcGLK1) isolated from kiwifruit (Actinidia chinensis cultivar 'Hongyang').

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!