NKCC1 null mice are hypotensive, in part, from the absence of NKCC1-mediated vasoconstriction. Whether these mice have renal defects in NaCl and water handling which contribute to the hypotension is unexplored. Therefore, we asked 1) whether NKCC1 (-/-) mice have a defect in the regulation of NaCl and water balance, which might contribute to the observed hypotension and 2) whether the hypotension observed in these mice is accompanied by endocrine abnormalities and/or downregulation of renal Na+ transporter expression. Thus we performed balance studies, semiquantitative immunoblotting, and immunohistochemistry of kidney tissue from NKCC1 (+/+) and NKCC1 (-/-) mice which consumed either a high (2.8% NaCl)- or a low-NaCl (0.01% NaCl) diet for 7 days. Blood pressure was lower in NKCC1 (-/-) than NKCC1 (+/+) mice following either high or low dietary NaCl intake. Relative to wild-type mice, NKCC1 null mice had a lower plasma ANP concentration, a higher plasma renin and a higher serum K+ concentration with inappropriately low urinary K+ excretion, although serum aldosterone was either the same or only slightly increased in the mutant mice. Expression of NHE3, the alpha-subunit of the Na-K-ATPase, NCC, and NKCC2 were higher in NKCC1 null than in wild-type mice, although differences were generally greater during NaCl restriction. NKCC1 null mice had a reduced capacity to excrete free water than wild-type mice, which resulted in hypochloremia following the NaCl-deficient diet. Hypochloremia did not occur from increased aquaporin-1 (AQP1) or 2 protein expression or from redistribution of AQP2 to the apical regions of principal cells. Instead, NKCC1 null mice had a blunted increase in urinary osmolality following vasopressin administration, which should increase free water excretion and attenuate the hypochloremia. In conclusion, aldosterone release is inappropriately low in NKCC1 null mice. Moreover, the action of aldosterone and vasopressin is altered within kidneys of NKCC1 null mice, which likely contributes to their hypotension. Increased Na+ transporter expression, increased plasma renin, and reduced plasma ANP, as observed in NKCC1 null mice, should increase vascular volume and blood pressure, thus minimizing hypotension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajprenal.00309.2005 | DOI Listing |
Skelet Muscle
January 2022
Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, USA.
Background: The sarcoglycan complex (SC) is part of a network that links the striated muscle cytoskeleton to the basal lamina across the sarcolemma. The SC coordinates changes in phosphorylation and Ca-flux during mechanical deformation, and these processes are disrupted with loss-of-function mutations in gamma-sarcoglycan (Sgcg) that cause Limb girdle muscular dystrophy 2C/R5.
Methods: To gain insight into how the SC mediates mechano-signaling in muscle, we utilized LC-MS/MS proteomics of SC-associated proteins in immunoprecipitates from enriched sarcolemmal fractions.
Front Cell Neurosci
September 2021
Aix-Marseille University UMR 1249, Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 1249, Parc Scientifique de Luminy, Marseille, France.
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the gene. Mouse models of RTT show reduced expression of the cation-chloride cotransporter KCC2 and altered chloride homeostasis at presymptomatic stages. However, whether these alterations persist to late symptomatic stages has not been studied.
View Article and Find Full Text PDFTrans Am Clin Climatol Assoc
March 2021
IOWA CITY, IOWA.
WNK [with-no-lysine (K)] kinases are a family of four members of serine and threonine kinases that regulate renal Na and K transport. Mutations of WNK1 and WNK4 cause a hereditary hypertensive and hyperkalemic disease known as pseudohypoaldosteronism type II (PHA2). Unlike other WNK isoforms, WNK1 is ubiquitously expressed and regulates many other cellular processes outside the kidney.
View Article and Find Full Text PDFCell Rep
January 2019
Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland. Electronic address:
It is generally thought that hippocampal neurons of perinatal rats and mice lack transport-functional K-Cl cotransporter KCC2, and that Cl regulation is dominated by Cl uptake via the Na-K-2Cl cotransporter NKCC1. Here, we demonstrate a robust enhancement of spontaneous hippocampal network events (giant depolarizing potentials [GDPs]) by the KCC2 inhibitor VU0463271 in neonatal rats and late-gestation, wild-type mouse embryos, but not in their KCC2-null littermates. VU0463271 increased the depolarizing GABAergic synaptic drive onto neonatal CA3 pyramidal neurons, increasing their spiking probability and synchrony during the rising phase of a GDP.
View Article and Find Full Text PDFFront Physiol
June 2018
Department of Oral Medicine, Academic Center for Dentistry, Amsterdam, Netherlands.
During enamel development, formation of hydroxyapatite crystals and regulation of pH in the enamel matrix require massive transport of ions. Both ameloblasts and adjacent dental epithelial cells in the stellate reticulum co-express several transmembrane cotransporters/ion-exchangers for transport of ions across plasma membranes. Gap junctions (GJs) enable intercellular exchanges of ions between neighboring cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!